一、I/O模型
对I/O 模型简单的理解就是用什么样的通道进行数据的发送和接收,这很大程度上决定了程序通信的性能。Java 共支持3种网络编程模型/IO模式:BIO、NIO、AIO。
Java BIO : 同步并阻塞(传统阻塞型),服务器实现模式为一个连接一个线程,即客户端有连接请求时服务器端就需要启动一个线程进行处理,如果这个连接不做任何事情就会造成不必要的线程开销。

Java NIO : 同步非阻塞,服务器实现模式为一个线程处理多个请求(连接),即客户端发送的连接请求都会注册到多路复用器上,多路复用器轮询到连接有I/O请求时就进行处理。

Java AIO(NIO2) : 异步非阻塞,AIO 引入异步通道的概念,采用了 Proactor 模式,简化了程序编写,有效的请求才启动线程,它的特点是先由操作系统完成IO操作后才通知服务端程序启动线程处理,适用于连接数较多且连接时间较长的应用。
BIO 方式适用于连接数目比较小且固定的架构,这种方式对服务器资源要求比较高, 并发局限于应用中,JDK1.4以前的唯一选择,但程序简单易理解。
NIO 方式适用于连接数目多且连接比较短(轻操作)的架构,比如聊天服务器,弹幕系统,服务器间通讯等。编程比较复杂,JDK1.4开始支持。
AIO 方式适用于连接数目多且连接比较长(重操作)的架构,比如相册服务器,充分调用OS参与并发操作,编程比较复杂,JDK7开始支持。
二、BIO
Java BIO 就是传统的java io 编程,其相关的类和接口在 java.io包下。
BIO(blocking I/O) : 同步阻塞,服务器实现模式为一个连接一个线程,即客户端有连接请求时服务器端就需要启动一个线程进行处理,如果这个连接不做任何事情就会造成不必要的线程开销,可以通过线程池机制改善。BIO方式适用于连接数目比较小且固定的架构,这种方式对服务器资源要求比较高, 并发局限于应用中,是JDK1.4以前的唯一选择,程序简单易理解。

示例:服务端监听6666端口
public class BIOServer {
public static void main(String[] args) throws Exception {
ExecutorService threadPool = Executors.newCachedThreadPool();
// 服务端监听6666端口
ServerSocket serverSocket = new ServerSocket(6666);
System.out.println("服务启动了!");
while (true) {
// 主线程
System.out.println("线程id[" + Thread.currentThread().getId() + "],name[" + Thread.currentThread().getName() + "]");
System.out.println("等待连接...");
// 主线程在未接收到新的客户端连接时会阻塞在这个地方,收到新的客户端连接则将连接交给线程池处理
final Socket socket = serverSocket.accept();
System.out.println("连接到一个客户端...");
threadPool.execute(() -> {
handler(socket);
});
}
}
public static void handler(Socket socket) {
try {
// 客户端处理线程,一个客户端一个处理线程
System.out.println("线程id[" + Thread.currentThread().getId() + "],name[" + Thread.currentThread().getName() + "]");
byte[] bytes = new byte[1024];
InputStream inputStream = socket.getInputStream();
while (true) {
System.out.println("线程id[" + Thread.currentThread().getId() + "],name[" + Thread.currentThread().getName() + "]");
System.out.println("read...");
// 在客户端不发送数据时线程会阻塞在此处
int read = inputStream.read(bytes);// 阻塞
System.out.println("read阻塞");
if (-1 != read) {
System.out.println(new String(bytes, 0, read));
} else {
// 这里的代码是不会执行的
break;
}
}
} catch (Exception e) {
e.printStackTrace();
} finally {
System.out.println("关闭和client的连接");
try {
// 正常情况下这里的代码是不会执行的
socket.close();
} catch (Exception e) {
e.printStackTrace();
}
}
}
}
使用telnet模拟客户端向服务端发送数据:
telnet 127.0.0.1 6666
为了处理客户端并发的问题,服务端必须为每个客户端建立一个线程与之通讯,因为每个线程的read操作都是阻塞的,而且想关闭一个客户端连接,必须在read操作之前进行判断(如定义数据传输结束符),否则是无法关闭连接的。因此,BIO的缺点就暴露出来了:
①每个请求都需要创建独立的线程,与对应的客户端进行数据 Read,业务处理,数据 Write;
②当并发数较大时,需要创建大量线程来处理连接,系统资源占用较大;
③连接建立后,如果当前线程暂时没有数据可读,则线程就阻塞在 Read 操作上,造成线程资源浪费;
三、NIO
Java NIO 全称 java non-blocking IO,是指 JDK 提供的新 API。从 JDK1.4 开始,Java 提供了一系列改进的输入/输出的新特性,被统称为 NIO(即 New IO),是同步非阻塞的。NIO 相关类都被放在 java.nio 包及子包下,并且对原 java.io 包中的很多类进行了改写。
NIO 有三大核心:Channel(通道)、Buffer(缓冲区)、Selector(选择器)。
NIO 是面向缓冲区 ,或者说面向块编程的。数据会被读取到一个它稍后处理的缓冲区,需要时可在缓冲区中前后移动,这就增加了处理过程中的灵活性,使用它可以提供非阻塞式的高伸缩性网络IO。Java NIO的非阻塞模式,使一个线程可以向某通道发送请求或者读取数据,但是它仅能得到目前可用的数据,如果目前没有数据可用,该线程就什么都不会获取,而不是保持线程阻塞,所以直至数据变的可以读取之前,该线程可以继续做其他的事情。 非阻塞写也是如此,一个线程请求写入一些数据到某通道,但不需要等待它完全写入,这个线程同时可以去做别的事情。 因此,NIO可以做到用一个线程来处理多个请求。假设有10000个请求过来, 根据实际情况,可以分配50或者100个线程来处理。不像之前的阻塞IO那样,非得分配10000个。
NIO的Buffer示例:
public class BasicBuffer {
public static void main(String[] args) {
IntBuffer intBuffer = IntBuffer.allocate(5);
// intBuffer.put(10);
// intBuffer.put(11);
// intBuffer.put(12);
for (int i = 0; i < intBuffer.capacity(); i++) {
intBuffer.put(i * 2);
}
// 读写模式转换
intBuffer.flip();
while (intBuffer.hasRemaining()) {
System.out.println(intBuffer.get());
}
}
}
NIO和BIO的比较:
①BIO 以流的方式处理数据,而 NIO 以块的方式处理数据,块 I/O 的效率比流 I/O 高很多;
②BIO 是阻塞的,NIO 则是非阻塞的;
③BIO 基于字节流和字符流进行操作,而 NIO 基于 Channel(通道)和 Buffer(缓冲区)进行操作,数据总是从通道读取到缓冲区中,或者从缓冲区写入到通道中。Selector(选择器)用于监听多个通道的事件(比如:连接请求,数据到达等),因此使用单个线程就可以监听多个客户端连接;
NIO中Channel、Selector和Buffer的关系:

①每个channel 都会对应一个Buffer,Buffer 是一个内存块 , 底层是一个数组
②Selector 对应一个线程, 一个线程对应多个channel(连接)
③该图反应了有三个channel 注册到该selector
④程序切换到哪个channel 是由事件决定的,Event 是一个很重要的概念,Selector 会根据不同的事件,在各个通道上切换
⑤数据的读取和写入都是通过Buffer, 这个和BIO不同,BIO 中要么是输入流,要么是输出流, 不能双向,但是NIO的Buffer 是即可以读也可以写的,但需要 flip() 方法切换
⑥channel 是双向的, 可以返回底层操作系统的情况, 比如Linux , 底层的操作系统通道就是双向的
1336

被折叠的 条评论
为什么被折叠?



