一、Producer API
1、消息发送流程
Kafka 的 Producer 发送消息采用的是异步发送的方式。在消息发送的过程中,涉及到了两个线程——main 线程和 Sender 线程,以及一个线程共享变量——RecordAccumulator。main 线程将消息发送给 RecordAccumulator,Sender 线程不断从 RecordAccumulator 中拉取消息发送到 Kafka broker。
相关参数:
batch.size:只有数据积累到 batch.size 之后,sender 才会发送数据
linger.ms:如果数据迟迟未达到 batch.size,sender 等待 linger.time 之后就会发送数据
2、异步发送 API
导入依赖:
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>0.11.0.0</version>
</dependency>
①不带回调函数API
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
import java.util.concurrent.ExecutionException;
public class CustomProducer {
public static void main(String[] args) throws ExecutionException,InterruptedException {
Properties props = new Properties();
//kafka 集群,broker-list
props.put("bootstrap.servers", "hadoop102:9092");
props.put("acks", "all");
//重试次数
props.put("retries", 1);
//批次大小
props.put("batch.size", 16384);
//等待时间
props.put("linger.ms", 1);
//RecordAccumulator 缓冲区大小
props.put("buffer.memory", 33554432);
props.put("key.serializer","org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer","org.apache.kafka.common.serialization.StringSerializer");
Producer<String, String> producer = new KafkaProducer<>(props);
for (int i = 0; i < 100; i++) {
producer.send(new ProducerRecord<String, String>("first", Integer.toString(i), Integer.toString(i)));
}
producer.close();
}
}
②带回调函数API
回调函数会在 producer 收到 ack 时调用,为异步调用,该方法有两个参数,分别是 RecordMetadata 和 Exception,如果 Exception 为 null,说明消息发送成功,如果 Exception 不为 null,说明消息发送失败。注意:消息发送失败会自动重试,不需要我们在回调函数中手动重试
import org.apache.kafka.clients.producer.*;
import java.util.Properties;
public class CustomProducer {
public static void main(String[] args) {
Properties props = new Properties();
//kafka 集群,broker-list
props.put("bootstrap.servers", "hadoop102:9092");
props.put("acks", "all");
//重试次数
props.put("retries", 1);
//批次大小
props.put("batch.size", 16384);
//等待时间
props.put("linger.ms", 1);
//RecordAccumulator 缓冲区大小
props.put("buffer.memory", 33554432);
props.put("key.serializer","org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer","org.apache.kafka.common.serialization.StringSerializer");
Producer<String, String> producer = new KafkaProducer<>(props);
for (int i = 0; i < 100; i++) {
producer.send(new ProducerRecord<String, String>("first", Integer.toString(i), Integer.toString(i)), new Callback() {
//回调函数,该方法会在 Producer 收到 ack 时调用,为异步调用
@Override
public void onCompletion(RecordMetadata metadata, Exception exception) {
if (exception == null) {
System.out.println("success->" + metadata.offset());
} else {
exception.printStackTrace();
}
}
});
}
producer.close();
}
}
用到的类:
KafkaProducer:需要创建一个生产者对象,用来发送数据
ProducerConfig:获取所需的一系列配置参数
ProducerRecord:每条数据都要封装成一个 ProducerRecord 对象
3、同步发送 API
同步发送的意思就是,一条消息发送之后,会阻塞当前线程,直至返回 ack。由于 send 方法返回的是一个 Future 对象,根据 Futrue 对象的特点,我们也可以实现同步发送的效果,只需再调用 Future 对象的 get 方法即可。
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
import java.util.concurrent.ExecutionException;
public class CustomProducer {
public static void main(String[] args) throws ExecutionException,InterruptedException {
Properties props = new Properties();
//kafka 集群,broker-list
props.put("bootstrap.servers", "hadoop102:9092");
props.put("acks", "all");
//重试次数
props.put("retries", 1);
//批次大小
props.put("batch.size", 16384);
//等待时间
props.put("linger.ms", 1);
//RecordAccumulator 缓冲区大小
props.put("buffer.memory", 33554432);
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
Producer<String, String> producer = new KafkaProducer<>(props);
for (int i = 0; i < 100; i++) {
// 最后调用get()同步等待
producer.send(new ProducerRecord<String, String>("first", Integer.toString(i), Integer.toString(i))).get();
}
producer.close();
}
}
二、Consumer API
Consumer 消费数据时的可靠性是很容易保证的,因为数据在 Kafka 中是持久化的,故不用担心数据丢失问题。由于 consumer 在消费过程中可能会出现断电宕机等故障,consumer 恢复后,需要从故障前的位置继续消费,所以 consumer 需要实时记录自己消费到了哪个 offset,以便故障恢复后继续消费。所以 offset 的维护是 Consumer 消费数据时必须考虑的问题。
导入依赖:
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>0.11.0.0</version>
</dependency>
1、自动提交 offset 的示例
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import java.util.Arrays;
import java.util.Properties;
public class CustomConsumer {
public static void main(String[] args) {
Properties props = new Properties();
props.put("bootstrap.servers", "hadoop102:9092");
props.put("group.id", "test");
// 自动提交offset
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms", "1000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
// 订阅topic
consumer.subscribe(Arrays.asList("first"));
while (true) {
ConsumerRecords<String, String> records = consumer.poll(100);
for (ConsumerRecord<String, String> record : records) {
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
}
}
}
}
为了使我们能够专注于自己的业务逻辑,Kafka 提供了自动提交 offset 的功能。自动提交 offset 的相关参数:
enable.auto.commit:是否开启自动提交 offset 功能
auto.commit.interval.ms:自动提交 offset 的时间间隔
2、手动提交 offset 的示例
虽然自动提交 offset 十分简单便利,但由于其是基于时间提交的,开发人员难以把握 offset 提交的时机。因此 Kafka 还提供了手动提交 offset 的 API。手动提交 offset 的方法有两种:分别是 commitSync(同步提交)和 commitAsync(异步提交)。两者的相同点是,都会将本次 poll 的一批数据最高的偏移量提交;不同点是,commitSync 阻塞当前线程,一直到提交成功,并且会自动失败重试(由不可控因素导致,也会出现提交失败);而 commitAsync 则没有失败重试机制,故有可能提交失败。
①同步提交
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import java.util.Arrays;
import java.util.Properties;
public class CustomConsumer {
public static void main(String[] args) {
Properties props = new Properties();
//Kafka 集群
props.put("bootstrap.servers", "hadoop102:9092");
//消费者组,只要 group.id 相同,就属于同一个消费者组
props.put("group.id", "test");
//关闭自动提交 offset
props.put("enable.auto.commit", "false");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
//消费者订阅主题
consumer.subscribe(Arrays.asList("first"));
while (true) {
//消费者拉取数据
ConsumerRecords<String, String> records = consumer.poll(100);
for (ConsumerRecord<String, String> record : records) {
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
}
//同步提交,当前线程会阻塞直到 offset 提交成功
consumer.commitSync();
}
}
}
由于同步提交 offset 有失败重试机制,故更加可靠。
②异步提交
import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;
import java.util.Arrays;
import java.util.Map;
import java.util.Properties;
public class CustomConsumer {
public static void main(String[] args) {
Properties props = new Properties();
//Kafka 集群
props.put("bootstrap.servers", "hadoop102:9092");
//消费者组,只要 group.id 相同,就属于同一个消费者组
props.put("group.id", "test");
//关闭自动提交 offset
props.put("enable.auto.commit", "false");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
//消费者订阅主题
consumer.subscribe(Arrays.asList("first"));
while (true) {
//消费者拉取数据
ConsumerRecords<String, String> records = consumer.poll(100);
for (ConsumerRecord<String, String> record : records) {
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
}
//异步提交
consumer.commitAsync(new OffsetCommitCallback() {
@Override
public void onComplete(Map<TopicPartition, OffsetAndMetadata> offsets, Exception exception) {
if (exception != null) {
System.err.println("Commit failed for" + offsets);
}
}
});
}
}
}
虽然同步提交 offset 更可靠一些,但是由于其会阻塞当前线程,直到提交成功。因此吞吐量会受到很大的影响。因此更多的情况下,会选用异步提交 offset 的方式。
无论是同步提交还是异步提交 offset,都有可能会造成数据的漏消费或者重复消费。先提交 offset 后消费,有可能造成数据的漏消费;而先消费后提交 offset,有可能会造成数据的重复消费。
消费者用到的类:
KafkaConsumer:需要创建一个消费者对象,用来消费数据
ConsumerConfig:获取所需的一系列配置参数
ConsumerRecord:每条数据都要封装成一个 ConsumerRecord 对象
三、自定义存储offset
Kafka 0.9 版本之前,offset 存储在 zookeeper,0.9 版本及之后,默认将 offset 存储在 Kafka 的一个内置的 topic 中。除此之外,Kafka 还可以选择自定义存储 offset。
offset 的维护是相当繁琐的,因为需要考虑到消费者的 Rebalance。当有新的消费者加入消费者组、现有的消费者退出消费者组或者所订阅的主题的分区发生变化,都会触发分区的重新分配,重新分配的过程叫做 Rebalance。
消费者发生 Rebalance 之后,每个消费者消费的分区就会发生变化。因此消费者要首先获取到自己被重新分配到的分区,并且定位到每个分区最近提交的 offset 位置继续消费。
要实现自定义存储 offset,需要借助 ConsumerRebalanceListener,其中提交和获取 offset 的方法,需要根据所选的 offset 存储系统自行实现。以下为示例代码:
import org.apache.kafka.clients.consumer.ConsumerRebalanceListener;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;
import java.util.*;
public class CustomConsumer {
private static Map<TopicPartition, Long> currentOffset = new HashMap<>();
public static void main(String[] args) {
//创建配置信息
Properties props = new Properties();
//Kafka 集群
props.put("bootstrap.servers", "hadoop102:9092");
//消费者组,只要 group.id 相同,就属于同一个消费者组
props.put("group.id", "test");
//关闭自动提交 offset
props.put("enable.auto.commit", "false");
//Key 和 Value 的反序列化类
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
//创建一个消费者
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
//消费者订阅主题
consumer.subscribe(Arrays.asList("first"), new ConsumerRebalanceListener() {
//该方法会在 Rebalance 之前调用
@Override
public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
commitOffset(currentOffset);
}
//该方法会在 Rebalance 之后调用
@Override
public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
currentOffset.clear();
for (TopicPartition partition : partitions) {
//定位到最近提交的 offset 位置继续消费
consumer.seek(partition, getOffset(partition));
}
}
});
while (true) {
//消费者拉取数据
ConsumerRecords<String, String> records = consumer.poll(100);
for (ConsumerRecord<String, String> record : records) {
System.out.printf("offset = %d, key = %s, value = % s % n ", record.offset(), record.key(), record.value());
currentOffset.put(new TopicPartition(record.topic(), record.partition()), record.offset());
}
commitOffset(currentOffset);//异步提交
}
}
//获取某分区的最新 offset
private static long getOffset(TopicPartition partition) {
return 0;
}
//提交该消费者所有分区的 offset
private static void commitOffset(Map<TopicPartition, Long> currentOffset) {
}
}