深度学习
Rudy95
talking is cheap
展开
-
(深度学习)Batch_normalization层
Batch_normalization是什么?传统的神经网络,只是在将样本x进入到输入层之前对x进行0-1标准化处理(减均值,除标准差),以降低样本间的差异性,如下图所示:。BN是在此基础上,不仅仅只对输入层的输入数据x进行标准化,还对每个隐藏层的输入进行标准化,如下图所示:加了一个batch_normalization层后,输入x首先乘以权重加上偏置得到s1,对s1进行归一化后,再进行伸...原创 2019-07-18 15:38:09 · 1140 阅读 · 0 评论 -
(深度学习)CNN和RNN,LSTM公式推导
BP的流程:CNN前向:反向:尺寸计算参数计算RNN前向:后向:原创 2019-07-28 20:20:57 · 1811 阅读 · 0 评论 -
信息熵,交叉熵,相对熵
信息熵:衡量系统中不确定的程度、编码方案完美时,最短平均编码长度交叉熵:码方案不一定完美时(由于对概率分布的估计不一定正确),平均编码长度。是神经网络常用的损失函数相对熵又称为散度:交叉熵-信息熵,relative entropy。编码方案不一定完美时,平均编码长度相对于最小值的增加值。参考链接:https://www.zhihu.com/question/41252833神经网络中为什么...原创 2019-08-12 10:29:34 · 253 阅读 · 0 评论