深入理解RabbitMQ中的prefetch_count参数

前提

在某一次用户标签服务中大量用到异步流程,使用了RabbitMQ进行解耦。其中,为了提高消费者的处理效率针对了不同节点任务的消费者线程数和prefetch_count参数都做了调整和测试,得到一个相对合理的组合。这里深入分析一下prefetch_count参数在RabbitMQ中的作用。

prefetch_count参数的含义

先从AMQP(Advanced Message Queuing Protocol,及高级消息队列协议,RabbitMQ实现了此协议的0-9-1版本的大部分内容)和RabbitMQ的具体实现去理解prefetch_count参数的含义,可以查阅对应的文档(见文末参考资料)。AMQP 0-9-1定义了basic.qos方法去限制消费者基于某一个Channel或者Connection上未进行ack的最大消息数量上限。basic.qos方法支持两个参数:

  • global:布尔值。
  • prefetch_count:整数。

这两个参数在AMQP 0-9-1定义中的含义和RabbitMQ具体实现时有所不同,见下表:

b6b6f0e15afb3aac2a56b5c13fd525f6.jpeg

或者用简洁的英文表格理解:

c9d400c48927aaee4ed4efd9e88ae6a2.jpeg

这里画一个图理解一下:

383bb66ae804c73a540e0aa38073003e.jpeg

上图仅仅为了区分协议本身和RabbitMQ中实现的不同,接着说说prefetch_count对于消费者(线程)和待消费消息的作用。假定一个前提:RabbitMQ客户端从RabbitMQ服务端获取到队列消息的速度比消费者线程消费速度快,目前有两个消费者线程共用一个Channel实例。当global参数为false时候,效果如下:

5dc6f8307280adb820b6cd40c7d09f61.jpeg

而当global参数为true时候,效果如下:

36c60c104de497a155850ffbb02a3bb7.jpeg

在消费者线程处理速度远低于RabbitMQ客户端从RabbitMQ服务端获取到队列消息的速度的场景下,prefetch_count条未进行ack的消息会暂时存放在一个队列(准确来说是阻塞队列,然后阻塞队列中的消息任务会流转到一个列表中遍历回调消费者句柄,见下一节的源码分析)中等待被消费者处理。这部分消息会占据JVM的堆内存,所以在性能调优或者设定应用程序的初始化和最大堆内存的时候,如果刚好用到RabbitMQ的消费者,必须要考虑这些"预取消息"的内存占用量。不过值得注意的是:prefetch_count是RabbitMQ服务端的参数,它的设置值或者快照都不会存放在RabbitMQ客户端。同时需要注意prefetch_count生效的条件和特性(从参数设置的一些demo和源码上感知):

  • prefetch_count参数仅仅在 basic.consume的 autoAck参数设置为 false的前提下才生效,也就是不能使用自动确认,自动确认的消息没有办法限流。
  • basic.consume如果在非自动确认模式下忘记了手动调用 basic.ack,那么 prefetch_count正是未 ack消息数量的最大上限。
  • prefetch_count是由 RabbitMQ服务端控制,一般情况下能保证各个消费者线程中的未 ack消息分发是均衡的,这点笔者猜测是 consumerTag起到了关键作用。

RabbitMQ客户端中prefetch_count源码跟踪

编写本文的时候引入的RabbitMQ客户端版本为:com.rabbitmq:amqp-client:5.9.0

上面说了这么多都只是根据官方的文档或者博客中的理论依据进行分析,其实更加根本的分析方法是直接阅读RabbitMQ的Java客户端源码,主要是针对basic.qos和basic.consume两个方法,对应的是com.rabbitmq.client.impl.ChannelN#basicQos()和com.rabbitmq.client.impl.ChannelN#basicConsume()两个方法。先看ChannelN#basicQos():

9cc1aa63db3cc780d95874c5ad5f2a9c.jpeg 854378c94060877badecf180a197ed07.jpeg

这里的basicQos()方法多了一个prefetchSize参数,用于限制分发内容的大小上限,默认值0代表无限制,而prefetchCount的取值范围是[0,65535],取值为0也是代表无限制。这里的ChannelN#basicQos()实现中直接封装basic.qos方法参数进行一次RPC调用,意味着直接更变RabbitMQ服务端的配置,即时生效,同时参数值完全没有保存在客户端代码中,印证了前面一节的结论。接着看ChannelN#basicConsume()方法:

225f171d7d252e6ba676766f32a20607.jpeg

上图已经把关键部分用红圈圈出,因为整个消息消费过程是异步的,涉及太多的类和方法,这里不全量贴出,整理了一个流程图:

d5400f65b314a57645829b4954b78aae.jpeg

整个消息消费过程,prefetch_count参数并未出现在客户端代码中,又再次印证了前面一节的结论,即prefetch_count参数的行为和作用完全由RabbitMQ服务端控制。而最终Customer或者常用的DefaultCustomer句柄是在WorkPoolRunnable中回调的,这类任务的执行线程来自于ConsumerWorkService内部的线程池,而这个线程池又使用了Executors.newFixedThreadPool()去构建,使用了默认的线程工厂类,因此在Customer#handleDelivery()方法内部打印的线程名称的样子是pool-1-thread-*。

prefetch_count参数使用

设置prefetch_count参数比较简单,就是调用Channel#basicQos()方法:

d864f2b7709dc574f8717f921dc69c07.jpeg11e415e34a18263896a0d31a1b196613.jpeg上面是原生的amqp-client的写法,如果使用了spring-amqp(spring-boot-starter-amqp),可以通过配置文件中的spring.rabbitmq.listener.direct.prefetch属性指定所有消费者线程的prefetch_count,如果要针对部分消费者线程进行该属性的设置,则需要针对RabbitListenerContainerFactory进行改造。

prefetch_count参数最佳实践

关于prefetch_count参数的设置,RabbitMQ官方有一篇文章进行了分析:《Finding bottlenecks with RabbitMQ 3.3》。该文章分析了消息流控的整个流程,其中提到了prefetch_count参数的一些指标:

f8cbc9110e5a02afabc89840a1bb74c8.jpeg

这里指出了,如果prefetch_count的值超过了30,那么网络带宽限制开始占主导地位,此时进一步增加prefetch_count的值就会变得收效甚微。也就是说,「官方是建议把prefetch_count设置为30」。这里再参看一下spring-boot-starter-amqp中对此参数定义的默认值,具体是AbstractMessageListenerContainer中的DEFAULT_PREFETCH_COUNT:

36fa69bf841c9397c6c8b5b07eb3a55e.jpeg

如果没有通过spring.rabbitmq.listener.direct.prefetch进行覆盖,那么使用spring-boot-starter-amqp中的注解定义的消费者线程中设置的prefetch_count就是250。

笔者认为,应该综合带宽、每条消息的数据报大小、消费者线程处理的速率等等角度去考虑prefetch_count的设置。总结如下(个人经验仅供参考):

  • 当消费者线程的处理速度十分慢,而队列的消息量十分少的场景下,可以考虑把 prefetch_count设置为 1。
  • 当队列中的每条消息的数据报十分大的时候,要计算好客户端可以容纳的未 ack总消息量的内存极限,从而设计一个合理的 prefetch_count值。
  • 当消费者线程的处理速度十分快,远远大于 RabbitMQ服务端的消息分发,在网络带宽充足的前提下,设置可以把 prefetch_count值设置为 0,不做任何的消息流控。
  • 一般场景下,建议使用 RabbitMQ官方的建议值 30或者 spring-boot-starter-amqp中的默认值 250。

小结

小结一下:

  • prefetch_count是 RabbitMQ服务端的参数,设置后即时生效。
  • prefetch_count对于 AMQP-0-9-1中的定义与 RabbitMQ中的实现不完全相同。
  • prefetch_count值设置建议使用框架提供的默认值或者通过分组实验结合数据报大小进行计算和评估出一个合理值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值