自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(20)
  • 收藏
  • 关注

转载 深度学习新星 图卷积神经网络(GCN)有多强大

在这篇(Kipf & Welling等,ICLR 2017)文章中,我们使用了一个相似的方法并且也是从谱图卷积的框架出发,并引入了一种简化方式(稍后介绍)既能明显加快训练时间又能得到更高的预测精度,在一些基准的图数据集上,达到了最好的效果。同样的,初始化的节点特征是可以提供的,在(Kipf& Welling, ICLR 2017)这篇文章的实验中我们确实是提供了的,我对这篇文章也写了一个简短的评论。经过观察,我们得到了非常有意义的平滑的嵌入,然后我们可以将嵌入后的距离解释为局部图结构的(不)相似性!

2023-06-11 15:26:39 251

转载 深度学习征服复杂性

我们知道,复杂网络可以看做是复杂系统的骨架(backbone),那么当我们处理不同的复杂系统时,我们便可以通过它们的骨架来进行识别、分类和预测。图1 复杂的训练管道,上面的流程为输入一块区域的卫星遥感数据,来预测同一区域的夜光明亮度,从而训练一个卷积神经网络以获得遥感数据中的特征。然而,它们全部是人为定义的。于是,人们想出了各种方法来改进,其中一种比较彻底的方式是,将所有的名词实体和各种关系(包括上下位、同义词等)分别嵌入到不同的空间(即实体空间和关系空间),这样可以更全面、更准确地来表达它们【10】。

2023-06-11 15:25:55 101

转载 浅谈强化学习

即在off-policy的情况下,优化的并不是当前policy的value了,而是所有可能value的最大值,即value的优化和当前的policy没有关系,所以叫“off-policy”。它的目标是要通过与环境(Environment)交互,根据环境的反馈(Reward),优化自己的策略(Policy),再根据策略行动(Action),以获得更多更好的反馈奖励(Reward)。有了上面的假设,机器所做的决策(π,Policy,表示下一步行动的策略),可以表示成只与当前状态有关的函数。

2023-06-11 15:23:06 318

转载 深度学习之后:经济推理与人工智能

摘要在人工智能(Artificial Intelligence, AI)领域中,人们正在建立可以感知周围环境、为达到特定目的而采取理性行动的智能主体(agents)。换句话说,AI研究者们正在试图建立一个人造的“理性经济人”(homo economicus,即新古典主义经济学塑造的那个神化般完美的理性经济主体)。这篇文章综述了人们在创造“机器经济人”(machine economicus)这一新机器物种方面的研究进展,并对如何构建可在经济学情境下进行有效推理的人工智能所面临的挑战进行了深入探讨。假如AI

2023-06-11 15:22:52 161

转载 深度学习 第1讲:深度学习简介和感知机原理与实现

(这里厘一下模型和算法的概念,小编认为,通常我们所说的像SVM之类的所谓机器学习十大算法其实不应该称之为算法,更应该称其为模型,机器学习的算法应该是在给定模型和训练策略的情况下采取的优化算法,比如梯度下降、牛顿法之类。可以看到相较于两层神经元的单层感知机,多层感知机中间多了一个隐藏层,称为隐藏层的含义在于神经网络的训练过程中我们只能观察到输入和输出层的数据,对于中间的隐藏层我们是看不见的,因而在深度神经网络(DNN)中,对于中间看不见又难以进行解释的隐藏层又有个黑箱子的称呼。

2023-06-11 15:22:02 100

转载 机器学习如何在大数据土壤上播种 课堂笔记

假定我们现在有这样的一组数据,特征值是肿瘤的尺寸,而决策变量是关于肿瘤是良性还是恶性的判断,那要怎么知道一个尺寸是1.5cm的肿瘤是良性还是恶性的呢?我们通过把点放到坐标系中,通过Logistic函数找到上图的这一条曲线,最后得出结果如果尺寸大于0.5则为恶性,小于0.5则为良性。再来考虑多加入一个特征值的情况,年龄,数据如下图所示:同样道理,在三维的坐标系中进行曲线的拟合,将会得出下面的结果。这里的函数就相当于人类大脑中的一个神经元。

2023-06-10 15:30:17 45

转载 机器学习中的概率统计

在大学阶段,大家都学过概率统计,那么为什么在机器学习中需要使用这部分知识时,却难以支撑了呢?这是我总结的以下几点原因,相信你也曾感同身受。机器学习数学基础萌发于高等数学、线性代数和概率统计,但绝不等同于大学本科的教学内容。回想一下大学概率统计课程包含了什么?事件的概率、随机变量及其分布、数字特征、参数估计与假设检验。差不多就这些,很重要、很核心,但这是远远不够的吧。事实上,我们还需要补充和等一些重要的基础知识,才能构建相对完整的知识结构。

2023-06-10 15:29:33 57

转载 数据分析师的春节攻略!五大经典问题爆笑回答

这里就是体现分析水平高低的时候了,我相信参加过天善学习的同学,对于数据采集,指标梳理,模型构建,报告撰写这些都已经掌握的七七八八了,考验的就是大家整理分析逻辑的时候了。你挣多少都有比你挣得多的,实在没有还能说:“那得存起来,你这不是公务员,不稳定”。作为专业分析师我们知道,无法复制的才是核心优势,所以直接把话题引到给爸妈买房上,反正那小地方房价你的工资也是抗的起的,吹牛不上税哈!1.如果你是一名数据分析专员,你可以学海瑞,学习他既能坚持自己的观点,按事实办事,又巧妙利用流程,不背黑锅!

2023-06-10 15:26:18 40

转载 数据分析师的十大吐槽,看到第九条你一定想转给某人

数据分析工作需要:基础数据采集,业务流程梳理,数据模型提出,分析维度设定,数据报表制作,分析结果解读至少六个步骤,从事数据分析工作,需要懂系统流程,懂业务流程,懂统计学知识,懂一点代码,懂一点报表制作,懂业务发展情况。分析的结果很重要,过程却专业的让大部分旁人无法理解,因此不但要有专业能力,更要有应付各种人,深入浅出的能力。四:终于把数据拼起来开始分析,发现好有规律啊,好工整啊,隐隐感到有坑,去业务部一问才知道,全是被经销商篡改操纵的数据,人家都有简便操作的顺口溜了,一读发现顺口溜还朗朗上口。

2023-06-10 15:25:46 54

转载 数据分析师的30种死法

7.重新来过,做完数据清洗,跑出了统计报表,发现有异常值,去问开发同学,开发同学经过认真细致的排查,表示之前取错数了,卒。29.上边的大BOSS换了个不懂行的,要汇报工作,大BOSS问,报告又不能卖钱,你们的价值体现在哪,卒。6.建立索引,操作跑的快一些了,开始做数据清洗,发现存储过程写错了字段名,把不该删的内容删了,卒。12.调参数,重跑,再调,几次之后觉得效果还不错,把规则提取出来,然后发现召回率不够,卒。19.吸收了业务部门的意见,重新做了报告,业务部门表示非常好,希望今后每周都能更新,卒。

2023-06-10 15:25:12 41

转载 从拓扑数据分析到压缩感知——复杂数据处理新贵

根据 Candes 的说法,可以取一半(16)的样本,并重新进行检测,如果是阳性,则该感染者属于该组,如果是阴性感染,感染者位于另外的一组,并且可以再次进行二分法,直到找到感染者。他创建了一个包含 2010 年所有 NBA 球员的数据集,并将他们的联盟平均数分为七个统计类别:得分,篮板,助攻,抢断,盖帽,失误和个人犯规,精细化到每一分钟,以确保上场时间不是一个影响因素。“如果事实证明,你所有的数据中掩藏着一头球形的牛一样的具体结构,那么 TDA 将是一个不错的选择,如果它不存在,你又能做什么?

2023-05-03 19:28:58 324

转载 从万物有灵到AI掌管世界——AI视野(三)

于是,淘宝智能助理会首先根据你这句话展开语义分析与理解,并开始利用深度规划技术来实现你这种所谓的“充满创意、特别刺激”,它会自动规划出,你需要购买什么什么服务,然后给出你相应的解决方案和花费让你确认。实际上,在训练阶段,GPU的确会消耗掉大量的算力,但是装载到智能硬件中的神经网络大多都是训练好的,这种网络的运算需求没有那么强。设想一下,当我把那个智能插座接上电以后,它会用流畅的中文跟我聊上几句,完成繁琐的设置,同时还能依据我的心情变换颜色,智能地帮我进行节能省电,那么我一定会爱上这个插座的。

2023-05-03 19:28:54 105

转载 人类行为预测:从社会物理学到机器学习

但直到近20年,我们才拥有了足够的数据,强大的计算能力和复杂的算法,来为人类的社会行为构建定量的理论。举个例子:探测宇宙非常小的变化来发现和跟踪快速移动且具有潜在的危险的近地物体,或者通过探测行星快速经过而引起的恒星光线的微弱变化,来寻找太阳系以外和地球体积相近的行星。一个用户往往会选择效仿好几个用户。总体的行为可能和个体的行为有所不同,因此为了预测人类的行为,需要高频率地分析在短时间之内收集到的小量数据集。当社交网络内的交易员的想法达到适当的平衡和多样化时,与个体交易员相比,他们的投资回报能提高30%。

2023-05-03 19:27:35 188

转载 人类终极挑战:赋予人造细胞生命,全人工细胞实现临近

二十多年来,制造有生命特征的“人造细胞”是科学家执着的追求,而现在有生物学家预测:第一个全人工合成的细胞可能会在十年内出现。如果这个细胞还能成长、分裂,无疑那将是人类巨大的进步。合成一个细胞只需要八份材料:两种蛋白质、三种缓冲剂、两种脂肪大分子外加一点点化学能。这些东西就足以带来生命的脉动——和细胞类似的基本结构、反应机理甚至自我繁殖。

2023-05-03 19:27:34 304

转载 人工智能社会学—未来新兴学科

从个体层面来说,你并不比孔子那个时候的人聪明多少,然而现代人类整体的能力却是古人所无法企及的。是文明与科技——这个人类集体的创造物反过来赋予了每个人类个体更高的智能。同样的道理,个体层面的人工智能存在着能力上的天花板,只有将成千上万的AI链接、整合起来,甚至创造出AI自己的文明,才可能为每一个个体AI赋能。还记得这张图吗?在上一篇文章中《从万物有灵到机器掌管世界》,我们将整个世界按照人类是否能够理解的程度划分了三个区域,现在我们将进入“人工智能自己玩”这个区域……人工智能的社会实际上将Soc

2023-05-03 19:26:25 177

转载 课程、活动、文章,集智数据玩起来!

光点表示学员自发形成的学习路径,光点的流向表示课程学习的前后顺序。还可以切换左上角的选项,看这门课程的“前置课程”或是“后继课程”都有哪些。如果参加过某个活动,可以点选右上角的活动图标,看看和你参加过相同活动的同伴们都是谁,他们又参加了哪些活动。文章分为10个大类,在右上角点亮感兴趣的类别,就可以看该类别的文章的在不同时间段的文章的分布以及数量。每个点代表一篇文章,点的大小表示了文章阅读人数的多少,相似的文章会像星系一样聚在一起。每个五颜六色的点代表了一门课程,点选后可以看见课程的名称。

2023-05-02 20:52:57 57

转载 谣言比真相传得更快更远,看AI如何拦住它

为了做到这一点,这个程序采用了从每页维基百科右侧的信息栏里的事实构建的庞大的名词网络--尽管已经有类似的网络从其他知识库被构建成,例如研究数据库。一份声明的主体和客体之间在这个网络中分离度越小,连接主体和客体的中间词越具体,这个电脑程序越可能把这个声明标记为真实的。以“巴拉克·奥巴马(Barack Obama)是穆斯林“的虚假声称为例,在这个名词网络中,“奥巴马(Obama)”和“伊斯兰(Islam)”之间有7个分离度,包括连接很多其他名词的非常普遍的名词,如”加拿大(Canada)“。

2023-05-02 20:52:55 92 1

转载 证明黎曼猜想的5页论文已发布!最简洁的解读在这里

最后,在论文的最后,阿蒂亚说,精细结构常数与黎曼猜想,用他的方法,已经被解决了。当然他只解决了复数域上的黎曼猜想,有理数域上的黎曼猜想,他还需要研究。如果在黎曼猜想中,出现的常数不是1/2,而是圆周率,那会让我觉得这个事情要优美一些。现在出现的却是1/2,这无疑让人觉得黎曼猜想不是一个涉及到宇宙本质的猜想,而仅仅是一个比较粗糙的数学半成品。他说在他的证明过程中,他引入了一个新的函数,这个函数叫做todd函数。在黎曼猜想中,我们看到非平凡零点的实部都等于1/2,这是一个让人很意外的常数。全文很短,只有5页。

2023-05-02 20:52:19 277 1

转载 关系式归纳偏好、深度学习和图网络

head标签作为一个容器,主要包含了用于描述 HTML 文档自身信息(元数据)的标签,这些标签一般不会在页面中被显示出来。

2023-05-02 20:50:49 62

转载 论文速递:作为复杂网络的深度学习系统

尤其是深度信念网络(Deep Belief Networks),它可以通过使用类似神经可塑性原理(hebbian theory)的学习机制找出数据的生成模型,以无监督的方式发现大型数据集中复杂的统计结构。三行分别对应深度神经网络的不同的层。图5:从MNIST手写数据集中出现第一个隐藏层的感受域分层聚类,树结构表示20个簇中每个簇之间的距离,较小的值表示更相似类型的感受域。图6:从自然图像数据集中出现第一个隐藏层的感受域分层聚类,树结构表示20个簇中每个簇之间的距离,较小的值表示更相似类型的感受域。

2023-05-02 20:50:42 347

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除