性质
流量平衡:对于非s,t的点,出入的流量之和为0。
对于如何求一组最小割边
从S开始dfs,标记为true,对于一条边,如果一端为true,另一端为false,那么这条边就属于割边。
关键割边:对于该边如果该边容量增加,那么网络的总流量增加。
:在最大流后的残余网络中,从S开始dfs标记点属于S集合,从T反向dfs标记属于T集合,如果一个边一端属于S集合,一端属于T集合,那么该边就是关键边。
(满流边不一定是关键边
如果对于所有点,要么属于S集合,要么属于T集合,那么对于这个图中,割是唯一的。
总结一下.
下面简称bfs为,把残余网络上bfs,即G[p]>0才算有边,情况下的bfs.
(1)求最小割方案(任意)【原来写过一篇日志】
由S开始bfs,bfs到的点为一个割集。剩下的点为一个T的割集。
(2)点属于的割集
必在S割集的点: 所有由S开始bfs到达的点
必在T割集的点: 所有由T开始bfs到达的点
剩下的点: 可不确定.
[为啥?MARK下]
(3)判断最小割的唯一性 【BZOJ 秘密任务】
如果所有点都可由S或T开始bfs到,则唯一。否则,不唯一。
(4)是否割边【AHOI 2009 最小割】