最小割的一些性质和理解

本文探讨了最小割的性质,包括流量平衡、关键割边的定义以及如何寻找它们。通过最大流算法求解最小割,并介绍了最小割树的概念,它是所有源目标节点对之间最小割的集合。此外,文章还提到了最小割树的构造过程和在无向图中的应用。
摘要由CSDN通过智能技术生成

性质

流量平衡:对于非s,t的点,出入的流量之和为0。

 

对于如何求一组最小割边

从S开始dfs,标记为true,对于一条边,如果一端为true,另一端为false,那么这条边就属于割边。

 

关键割边:对于该边如果该边容量增加,那么网络的总流量增加。

:在最大流后的残余网络中,从S开始dfs标记点属于S集合,从T反向dfs标记属于T集合,如果一个边一端属于S集合,一端属于T集合,那么该边就是关键边。

(满流边不一定是关键边

 

如果对于所有点,要么属于S集合,要么属于T集合,那么对于这个图中,割是唯一的。

 

总结一下.
下面简称bfs为,把残余网络上bfs,即G[p]>0才算有边,情况下的bfs.
(1)求最小割方案(任意)【原来写过一篇日志】
由S开始bfs,bfs到的点为一个割集。剩下的点为一个T的割集。
(2)点属于的割集
必在S割集的点: 所有由S开始bfs到达的点
必在T割集的点: 所有由T开始bfs到达的点
剩下的点: 可不确定.
[为啥?MARK下]
(3)判断最小割的唯一性 【BZOJ 秘密任务】
如果所有点都可由S或T开始bfs到,则唯一。否则,不唯一。
(4)是否割边【AHOI 2009 最小割】
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值