在树中求两个结点的最近共同祖先(LCA,即Lowest Common Ancestor)

本文介绍了如何在二叉搜索树(BST)中找到两个节点的最近公共祖先(LCA)。LCA是指离两个节点最近的共同祖先,且是最靠近树根的节点。当节点有双亲指针时,可以通过遍历找到LCA;若没有,可以从根节点开始,利用BST的性质,找到第一个大于n1且小于n2的节点作为LCA。提供了C和Java两种实现方式,算法的时间复杂度为O(h),空间复杂度为O(h)。
摘要由CSDN通过智能技术生成

问题描述:首先定义一个术语 LCA(Lowest Common Ancestor):设 T 为一棵树,n1 和 n2 都存在于 T 中,n1 和 n2 的 LCA 为离它们两最近的共同祖先(一个节点的祖先可以是它自己)。n1 和 n2 的最近共同祖先,也是它们的共同祖先中,离树根最远的那个节点。如下图是一棵二叉树

图中,10 和 14 的 LCA 是 12,8 和 14 的 LCA 是 8。

两节点的 LCA 是非常有用的,例如两节点 n1 和 n2 的距离,等于根节点到 n1 的距离加上等于根节点到 n2 的距离,减去它们的根节点到它两的最近共同祖先(LCA)节点距离的两倍。

现给定一棵 BST,求 BST 上两节点 n1、n2 的 LCA。

 

解:如果给定的 BST 的每个节点都有指向其双亲的指针,那么两节点的 LCA 就很容易找到了,只要我们让两节点向根节点方向遍历,它们第一次相遇的节点即为它们的 LCA。

在节点没有双亲指针的情况下,我们可以利用 BST 的特性,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Storm-Shadow

你的鼓励将是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值