微分方程解的结构
微分方程求解一定要对号入座(先搞清楚方程的类型,再选择相应地方法去解)
补充线性相关与无关概念
二阶齐次线性方程解的结构
二阶非齐次线性方程解的结构
也就是说 非齐次通解=齐次的通解+非齐次的特解
以上定理都可推广到n阶线性微分方程
二阶线性微分方程
二阶齐次线性微分方程
- 二阶常系数齐次方程
y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 y''+P(x)y'+Q(x)y=0 y′′+P(x)y′+Q(x)y=0
n阶常系数齐次方程
二阶非齐次线性微分方程
y ′ ′ + P ( x ) y ′ + Q ( x ) y = f ( x ) y''+P(x)y'+Q(x)y=f(x) y′′+P(x)y′+Q(x)y=f(x)
- 二阶常系数非齐次微分方程
当 P ( x ) = p , Q ( x ) = q , ( p , q 都 是 常 数 ) 时 y ′ ′ + p y ′ + q y = f ( x ) 当P(x)=p,Q(x)=q,(p,q都是常数)时\ y''+py'+qy=f(x) 当P(x)=p,Q(x)=q,(p,q都是常数)时 y′′+py′+qy=f(x)
当非齐次方程右边为下面这种形式时有三种情况