Prim最小生成树算法,c代码,非伪…

      不知道为何数据结构书上总是喜欢用伪代码,其实真实代码多不了几行。也许是为了让学生动手的时候可以动动脑子?
      最小生成树用贪心算法可以求得最优解,实现起来没啥营养很简单。不过有多个加了限制条件的扩展版是NP完全问题,就没这么容易求解了。
========================================================================
#include <stdio.h>
#include <stdlib.h>

#define VEX_NUM                // max vex num
#define ME 0xffffffff            // maximum edge
typedef unsigned int uint;

uint dist[VEX_NUM][VEX_NUM] =
{
      0,  6, 1,  5, ME, ME},
      6,  0, 5, ME,  3, ME},
      1,  5, 0,  5,  6,  4},
      5, ME, 5,  0, ME,  2},
      { ME,  3, 6, ME,  0,  6},
      { ME, ME, 4,  2,  6,  0}
};

void mst_prim()
{
      struct {
            int vex;
            uint cost;
      } closest_edge[VEX_NUM];
     
      int first = rand() % VEX_NUM;                              //      随机选择一个点作为集合U的第一个元素
      closest_edge[first].cost = 0;
      for (int i = 0; i < VEX_NUM; ++ i)                        //      辅助数组初始化
      {
            if (i != first)
            {
                  closest_edge[i].vex = first;                  //      此时U集合只有一个元素V[first],所以必然是first
                  closest_edge[i].cost = dist[i][first];      //      最短距离就是dist[i][first]           
            }
      }
      for (int i = 1; i < VEX_NUM; ++ i)                        //      每次选择一个点,故需要运行(n-1)次
      {
            uint min_cost = ME;
            int pick = -1;
            for (int j = 0; j < VEX_NUM; ++ j)                  //      找出最小的cost的点
            {
                  if (closest_edge[j].cost != 0 && closest_edge[j].cost < min_cost)
                  {
                        pick = j;
                        min_cost = closest_edge[j].cost;
                  }
            }
            printf("%d - %d\n", closest_edge[pick].vex, pick);
            closest_edge[pick].cost = 0;
            for (int j =0; j < VEX_NUM; ++ j)                  //      刷新辅助数组
            {
                  if (dist[pick][j] < closest_edge[j].cost)
                  {
                        closest_edge[j].vex = pick;
                        closest_edge[j].cost = dist[pick][j];
                  }
            }
      }
}

int main()
   
      mst_prim();
      return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值