吴恩达机器学习6-4代价函数学习收获

如何拟合logistic模型参数θ,用来拟合的参数优化目标或者叫代价函数。假设训练集有m个训练样本,每个训练样本中用n+1维的特征向量表示,x0=1,具体实例如下图所示。
在这里插入图片描述
如果依然使用线性回归中的均方误差来作为代价函数,由于1 / ( 1 + e − x )结构复杂,那么会导致Logistic回归的代价函数是非凸函数。如下图中的左侧所示,非凸函数有多个局部最优解,梯度下降法不能很好地工作。
在这里插入图片描述
因此,需要为Logistic回归单独设计其他的代价函数,想到引入log函数,单个样本的代价计算如下。
在这里插入图片描述
根据数学知识可以证明,这样的代价函数,是一个凸函数,没有局部最优解。当真实值是1时,如果预测值也是1,单个样本的代价是0;如果预测值是0,单个样本的代价是无穷大。具体情况如下图所示。
在这里插入图片描述
当真实值是0时,如果预测值也是0,单个样本的代价是0;如果预测值是1,单个样本的代价是无穷大,说明就要付出较大的代价。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值