关于关系矩阵的判断(C)

问题来源

http://topic.csdn.net/u/20080421/19/2767192b-376d-4709-9441-11a2bcda2a88.html

 


#include  <stdio.h>
#include  <stdlib.h>
#include  <math.h>


/*
 * 判断自反
 */
bool Reflexive(int a[100][100], int n)
{
  int i;
  for(i = 0; i < n; i++)
    if(a[i][i] == 0)
      return false;
  return true;
}

/*
 * 判断反自反
 */
bool Reflexiveness(int a[100][100], int n)
{
  int i;
  for(i = 0; i < n; i++)
    if(a[i][i] == 1)
      return false;
  return true;
}

/*
 * 判断是否对称
 */
bool Symmetry(int a[100][100], int n)
{
  int i, j;
  for(i = 0; i < n - 1; i++){
    for(j = i + 1; j < n; j++){
      if(a[i][j] != a[j][i])
        return false;
    }
  }
  return true;
}

/*
 * 判断是否反对称
 */
bool Antisymmetry(int a[100][100], int n)
{
  int i, j;
  for(i = 0; i < n - 1; i++){
    for(j = i + 1; j < n; j++){
      if((a[i][j] == 1 && a[j][i] == 1) && (i != j))
        return false;
    }
  }
  return true;
}

/*
 * 判断是否传递
 */
bool Transitive(int a[100][100], int n)
{
  int i, j, k;
  for(i = 0; i < n; i++){
    for(j = 0; j < n; j++){
      if(a[i][j] == 1){ /* 若ij存在关系,则对所有与 j 存在关系的必与 i 存在关系,是为传递 */
        for(k = 0; k < n;k++){
          if(a[j][k] == 1 && a[i][k] != 1)
            return false;
        }
      }
    }
  }
  return true;
}

/*
 * 判断是否为空
 */
bool isEmptySet(int a[100][100], int n){
  int i,j;
  for(i = 0;i < n;i++){
    for(j = 0;j < n;j++)
      if(a[i][j])
        return false;
  }
  return true;
}


int main(int argc,char *argv[])
{
  FILE *fp;
  int i = 0, j, n;
  int b[10000], a[100][100];

  if(argc < 2){
    printf("Usage :/n<程序名> <input-file-name>/n/n");
    exit(0);
  }
  fp = fopen(argv[1], "r");

  if(!fp){
    printf("Can not open !");
    exit(0);
  }
 
  while(!feof(fp)){
    fscanf(fp, "%d", b + i++);
  }
  fclose(fp);

  n = (int)sqrt(i);
/* 直接用坐标映射,不需要再次读取文件 */
  for(j = 0;j < i;j++){
    a[j/n][j % n] = b[j];
  }

  printf("The relation is:/n");
  for(i = 0; i  < n; i++){
    for(j = 0; j  < n; j++)
      printf("%-3d", a[i][j]);
    printf("/n");
  }

  if(isEmptySet(a,n))
    printf("<Empty Set>/n");
  else{
    if(!Reflexive(a, n))    printf("not "); printf("reflexive, ");
    if(!Reflexiveness(a, n))printf("not "); printf("reflexiveneww, ");
    if(!Symmetry(a, n))     printf("not "); printf("symmetry, ");
    if(!Antisymmetry(a, n)) printf("not "); printf("antisymmetry, ");
    if(!Transitive(a, n))   printf("not "); printf("transitive./n");
  }
  return 1;
}


测试例 1: 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 输出: not reflexive, not reflexiveneww, not symmetry, antisymmetry, transitive.  测试例 2: 1 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 输出: reflexive, not reflexiveneww, not symmetry, not antisymmetry, transitive.  测试例 3: 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 输出: not reflexive, reflexiveneww, symmetry, not antisymmetry, not transitive.  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值