一张图了解---图卷积神经网络(GCN)公式详解

博客介绍了图神经网络,其应用领域广泛,涵盖场景分析、推荐系统、欺诈检测等多个方面。图由提取特征等组成,目的是整合特征,图像和文本都能以图的形式表示。还提到了图卷积神经网络,可进行半监督学习,少量标签也能训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图神经网络
应用领域:场景分析与问题推理,推荐系统,欺诈检测,知识图谱,道路交通流量预测,自动驾驶,无人机,化学,医疗,物理。
图的组成如下所示:提取特征。。。
在这里插入图片描述
图神经网络目的是整合特征,
在这里插入图片描述
图的邻接矩阵,
对于图像来说,每个像素点周围都有令居,A表示邻居之间的关系。
在这里插入图片描述
文本也可以表示为图的形式
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
图卷积神经网络

半监督学习!:不需要全部标签,少量标签也能训练!计算损失只用有标签的!

下面一张图了解GCN

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值