- 博客(2)
- 收藏
- 关注
原创 重新理解precision和recall
TP True Positive 是把正例正确判定为正例 TN True Negative 是把负例正确判定为负例 FN False Negative 是把正例错误判定为负例 FP False Postive 是把负例错误判定为正例 理解 理解上来讲,T和F分别表示判断对了、判断错了;P和N分别表示预测的是正例和负例。 连起来讲,TP就是判断对了正例,即把正例预测为了正例; TN是判断对了负例,即把负例预测为了负例; FP是判断错了正例,即把负例预测为了正例; FN是判断错了负例,即把正例当成负例。 总结
2020-10-12 14:55:46 159
原创 DataConversionWarning: A column-vector y was passed when a 1d array was expected.
DataConversionWarning: A column-vector y was passed when a 1d array was expected. 问题解决 问题描述: 在使用sklearn做knn模型的时候遇到了这个问题,表面理解为期待一个一维向量的时候传递了一个列向量。 解决办法: 在这句knn.fit(X_train, Y_train.astype(‘int’))之前对Y_t...
2019-11-03 19:31:10 4804
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人