leetcode解题常见思路

本文介绍了LeetCode中常见的解题思路,包括双指针、二分法、滑动窗口、递归、分治法、回溯法、深度优先搜索(DFS)、广度优先搜索(BFS)、贪心算法、记忆化搜索和动态规划。对于每种方法,作者提供了典型题目和应用场景,强调了动态规划的重要性,并给出了相关参考资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(梳理框架主要由up主提供)

前言

  • 解题思路是解题过程中最关键的一步,即使最终没做出来,能大概知道解题思路甚至有多个解题思路也是挽救方法
  • 以下提及题目不止对应技巧一种思路,但建议先按对应思路去解题,再考虑其他思路优化
  • 个人认为最重要的标了★
  • 题目尽量按难度从低到高排序,题目挑选后续也会随着我的刷题经验进行调整

双指针

双指针常用于数组、链表两种线性表(有序)数据结构相关的题,具体又分为

  • 相向双指针:
    • 两个指针一头一尾往中间移动
    • 多应用于数组的连续子序列或两两组合,有规律的缩小范围
  • 单向双指针
    • 两个指针往同一个方向移动(没想到什么场景后续补充吧)
  • 快慢指针:
    • 通常慢指针向前走一步,快指针向前走两步
    • 多用于链表、因为链表无法直接通过索引访问
    • 通常利用快慢指针找到链表的中点或公共节点

881. 救生艇
11. 盛最多水的容器
141. 环形链表

二分法

常用于有序数组,取中点二分后按一定规则只取其中一边再继续二分,多用于查数

704. 二分查找
35. 搜索插入位置
162. 寻找峰值

滑动窗口

常用于连续子序列的长度、统计量例如总和、计数等最优值问题

209. 长度最小的子数组
1456. 定长子串中元音的最大数目

递归★

递归是指一个函数在运行时调用自己,框架如下

def recursion(params):		   #1.函数输入参数
	if params==1:			   #2.递归终止条件
		return 0
	params=params-1
	res=1+recursion(params)    #3.调用自身
	return res                 #4.返回值

递归有时不是直接的最优解题方法,但却是最基本、一定能解题的思想。
509. 斐波那契数
206. 反转链表
344. 反转字符串

分治法

是一种特殊的递归,将问题进行分解,每个分解部分都有可能调用自己即递归到下一层,总结就是一个函数会同时多次或有选择性地调用自己、只是入参具体值不相同

我推荐实现归并排序
912. 排序数组

以下是up主推荐的可以用分治技巧的题,试了一下一道也无法一次性顺利按分治解出QAQ,建议大家做题熟练后再回来试试
169. 多数元素
215. 数组中的第K个最大元素
53. 最大子序和

回溯法★

一种通过探索所有可能的候选解来找出所有的解的算法。如果候选解被确认不是一个解(或者至少不是最后一个解),回溯算法会通过在上一步进行一些变化抛弃该解,即回溯并且再次尝试。(力扣定义)
是一种特殊的递归,常用于枚举组合+过滤或去重(可选)场景:
1.尝试一种路径,层层递归(调用自己)
2.找到答案并返回答案(返回值)
3.找不到答案返回上一层(终止条件)
4.尝试其他路径(调用自己)
去重前需保证枚举集有序

46. 全排列
47. 全排列 II
78. 子集
90. 子集 II
39. 组合总和
40. 组合总和 II

做题tips:个人习惯用入口函数全局结果变量+内嵌递归函数的方式来完成

深度优先搜索(Depth First Search, DFS)★

针对树结构,从根节点走一个分支到底后,返回最近的非叶子节点再走另一个分支走到底,这样直到把所有节点遍历完成
up主总结是回溯=DFS+剪枝,但我觉得回溯也不必须剪枝(上方回溯定义),所以是不是更合适的说DFS也是一种回溯。
深度优先搜索与广度优先搜索过程对比

# 基本框架
def dfs(root):
	if not root:return None
	dfs(root.left)
	dfs(root.right)
	return None 

有些题目既能用DFS也能用BFS

938. 二叉搜索树的范围和

广度优先搜索(Breadth First Search, BFS)

针对树结构,从根节点一层一层遍历子节点,直到所有节点遍历完成。
比起DFS,BFS应用偏少,常用于层序遍历、最短路径场景。

# 基本框架
def bfs(root):
	if not root: return None
	q=collections.deque([root])
	while q:
		root=q.popleft()
		if root.left:
			q.append(root.left)
		if root.right:
			q.append(root.right)
	return None

102. 二叉树的层序遍历
107. 二叉树的层序遍历 II

贪心算法

每一步都优先当前时刻最优选择走,实现局部最优。

55. 跳跃游戏

记忆化搜索

是一个辅助递归的技巧,通常用字典记录下不同入参下递归函数的返回值,这样碰到同样入参,则直接调出返回值。

509. 斐波那契数

动态规划(Dynamic Programming, DP)★★★

动态规划是每一步的状态/最优解基于上一步的状态/最优解,即存在最优子结构,所以最重要的是找到状态转移方程,基本框架如下(以斐波那契数列为例)

def dynamic_programming():
	dp=[None for i in range(n)] #用于后续存储每个状态下的结果
	dp[0],dp[1]=0,1 #初始状态
	for i in range(2,n):
		dp[i]=dp[i-1]+dp[i-2] #状态转移方程
	return dp[-1] #最终状态

DP是递推思想(递推:从已知到未知,递归:从未知到已知)

剑指 Offer 13. 机器人的运动范围
股票系列
121. 买卖股票的最佳时机
122. 买卖股票的最佳时机 II
309. 最佳买卖股票时机含冷冻期
714. 买卖股票的最佳时机含手续费
123. 买卖股票的最佳时机 III
188. 买卖股票的最佳时机 IV
背包系列(这个我还没get完全后面再补充这块,想试试的可以先做题,想学习的可见下方资料)
322. 零钱兑换

参考资料

BFS 的使用场景总结:层序遍历、最短路径问题
01背包最值问题讲解视频
完全背包最值问题
一篇文章吃透背包问题!(细致引入+解题模板+例题分析+代码呈现)
背包九讲专题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值