(梳理框架主要由up主提供)
前言
- 解题思路是解题过程中最关键的一步,即使最终没做出来,能大概知道解题思路甚至有多个解题思路也是挽救方法
- 以下提及题目不止对应技巧一种思路,但建议先按对应思路去解题,再考虑其他思路优化
- 个人认为最重要的标了★
- 题目尽量按难度从低到高排序,题目挑选后续也会随着我的刷题经验进行调整
双指针
双指针常用于数组、链表两种线性表(有序)数据结构相关的题,具体又分为
- 相向双指针:
- 两个指针一头一尾往中间移动
- 多应用于数组的连续子序列或两两组合,有规律的缩小范围
- 单向双指针
- 两个指针往同一个方向移动(没想到什么场景后续补充吧)
- 快慢指针:
- 通常慢指针向前走一步,快指针向前走两步
- 多用于链表、因为链表无法直接通过索引访问
- 通常利用快慢指针找到链表的中点或公共节点
881. 救生艇
11. 盛最多水的容器
141. 环形链表
二分法
常用于有序数组,取中点二分后按一定规则只取其中一边再继续二分,多用于查数
704. 二分查找
35. 搜索插入位置
162. 寻找峰值
滑动窗口
常用于连续子序列的长度、统计量例如总和、计数等最优值问题
209. 长度最小的子数组
1456. 定长子串中元音的最大数目
递归★
递归是指一个函数在运行时调用自己,框架如下
def recursion(params): #1.函数输入参数
if params==1: #2.递归终止条件
return 0
params=params-1
res=1+recursion(params) #3.调用自身
return res #4.返回值
递归有时不是直接的最优解题方法,但却是最基本、一定能解题的思想。
509. 斐波那契数
206. 反转链表
344. 反转字符串
分治法
是一种特殊的递归,将问题进行分解,每个分解部分都有可能调用自己即递归到下一层,总结就是一个函数会同时多次或有选择性地调用自己、只是入参具体值不相同
我推荐实现归并排序
912. 排序数组
以下是up主推荐的可以用分治技巧的题,试了一下一道也无法一次性顺利按分治解出QAQ,建议大家做题熟练后再回来试试
169. 多数元素
215. 数组中的第K个最大元素
53. 最大子序和
回溯法★
一种通过探索所有可能的候选解来找出所有的解的算法。如果候选解被确认不是一个解(或者至少不是最后一个解),回溯算法会通过在上一步进行一些变化抛弃该解,即回溯并且再次尝试。(力扣定义)
是一种特殊的递归,常用于枚举组合+过滤或去重(可选)场景:
1.尝试一种路径,层层递归(调用自己)
2.找到答案并返回答案(返回值)
3.找不到答案返回上一层(终止条件)
4.尝试其他路径(调用自己)
去重前需保证枚举集有序
46. 全排列
47. 全排列 II
78. 子集
90. 子集 II
39. 组合总和
40. 组合总和 II
做题tips:个人习惯用入口函数全局结果变量+内嵌递归函数的方式来完成
深度优先搜索(Depth First Search, DFS)★
针对树结构,从根节点走一个分支到底后,返回最近的非叶子节点再走另一个分支走到底,这样直到把所有节点遍历完成
up主总结是回溯=DFS+剪枝,但我觉得回溯也不必须剪枝(上方回溯定义),所以是不是更合适的说DFS也是一种回溯。
# 基本框架
def dfs(root):
if not root:return None
dfs(root.left)
dfs(root.right)
return None
有些题目既能用DFS也能用BFS
广度优先搜索(Breadth First Search, BFS)
针对树结构,从根节点一层一层遍历子节点,直到所有节点遍历完成。
比起DFS,BFS应用偏少,常用于层序遍历、最短路径场景。
# 基本框架
def bfs(root):
if not root: return None
q=collections.deque([root])
while q:
root=q.popleft()
if root.left:
q.append(root.left)
if root.right:
q.append(root.right)
return None
102. 二叉树的层序遍历
107. 二叉树的层序遍历 II
贪心算法
每一步都优先当前时刻最优选择走,实现局部最优。
记忆化搜索
是一个辅助递归的技巧,通常用字典记录下不同入参下递归函数的返回值,这样碰到同样入参,则直接调出返回值。
动态规划(Dynamic Programming, DP)★★★
动态规划是每一步的状态/最优解基于上一步的状态/最优解,即存在最优子结构,所以最重要的是找到状态转移方程,基本框架如下(以斐波那契数列为例)
def dynamic_programming():
dp=[None for i in range(n)] #用于后续存储每个状态下的结果
dp[0],dp[1]=0,1 #初始状态
for i in range(2,n):
dp[i]=dp[i-1]+dp[i-2] #状态转移方程
return dp[-1] #最终状态
DP是递推思想(递推:从已知到未知,递归:从未知到已知)
剑指 Offer 13. 机器人的运动范围
股票系列
121. 买卖股票的最佳时机
122. 买卖股票的最佳时机 II
309. 最佳买卖股票时机含冷冻期
714. 买卖股票的最佳时机含手续费
123. 买卖股票的最佳时机 III
188. 买卖股票的最佳时机 IV
背包系列(这个我还没get完全后面再补充这块,想试试的可以先做题,想学习的可见下方资料)
322. 零钱兑换
参考资料
BFS 的使用场景总结:层序遍历、最短路径问题
01背包最值问题讲解视频
完全背包最值问题
一篇文章吃透背包问题!(细致引入+解题模板+例题分析+代码呈现)
背包九讲专题