题目描述
给定一个正整数 p
求一个最小的正整数 n,使得 n! 是 p 的倍数
输入描述:
第一行输入一个正整数T表示测试数据组数
接下来T行,每行一个正整数p
输出描述:
输出T行,对于每组测试数据输出满足条件的最小的n。
示例1
输入
4
1
2
4
8
输出
1
2
4
4
题解:这道题说的很明白,这里用二分法进行求解,这里我们把p分解成质因子的幂相乘的形式
,因此我们只要找出一个数满足所有p中每个质因子出现的次数小于这个数用唯一分解定理分解之后,每个质因子出现的次数即可。因为我们要求的数是阶乘的形式,所以在计算质因子出现的个数的时候要这样计算,举个例子假如要计算8的阶乘中 2这个因子分解的次数,这里我们就这样理算,因为8的阶乘里面能整除2的数有 2 4 6 8,四个,除以2之后1-4之内是2的倍数的数有2 4两个,再除2之后1-2之内2的倍数的数有1个,所以这里一共有4+2+1=7个,
bool check(int x)//判断这个数是否满足条件
{
for(int i=1;i<=k;i++)//k是p的所有质因子数
{
int primernum=0,n=x;//primernum是判断的这个数,有几个prime[i]这个质因子数
while(n)
{
primernum+=n/prime[i];//计算阶乘中有几个此时的质因子
n/=prime[i];
}
if(primernum<num[i])return false;//如果某个质因子在x中的分解出来的次数小于在p中出现的次数,那么说明不符合条件
}
return true;//执行到这一步表示符合条件
}
下面是唯一分解定理求出p的所有质因子,并求出每个质因子出现的次数。
for(int i=2;i*i<=p;i++)
{
if(p%i==0)
{
prime[++k]=i;
while(p%i==0)
{
num[k]++;
p/=i;
}
}
}
if(p>1) prime[++k]=p,num[k]++;
这个时候我们已经把p用埃氏筛进行分解,每个质因子的个数也都已经求出来了,这个时候我们只需要对x就行二分即可,取l=1,r=1e9;如果mid符合条件那么我们就舍弃左边部分,因为是阶乘,如果mid不符合条件,那么1-mid也都是不符合,因此舍弃左边部分,然后一直维护ans的值即可。
下面是AC代码
#include<bits/stdc++.h>
using namespace std;
const int inf=0x3f3f3f3f;
const int maxn=1e6+100;
int prime[maxn],num[maxn];
int k,t,p;
bool check(int x)
{
for(int i=1;i<=k;i++)
{
int primernum=0,n=x;
while(n)
{
primernum+=n/prime[i];
n/=prime[i];
}
if(primernum<num[i])return false;
}
return true;
}
void solve()
{
k=0;
for(int i=2;i*i<=p;i++)
{
if(p%i==0)
{
prime[++k]=i;
while(p%i==0)
{
num[k]++;
p/=i;
}
}
}
if(p>1) prime[++k]=p,num[k]++;
int l=1,r=1e9,mid,ans;
while(l<=r)
{
mid=(l+r)/2;
if(check(mid))r=mid-1,ans=mid;
else l=mid+1;
}
memset(prime,0,sizeof prime);
memset(num,0,sizeof num);
cout<<ans<<endl;
}
int main()
{
cin>>t;
while(t--)
{
cin>>p;
solve();
}
system("pause");
}
写的很仓促,有错误请联系我。