深度学习
xianxianlele
这个作者很懒,什么都没留下…
展开
-
多头自注意力机制Pytorch实现
注意力机制广泛存在于现在的深度学习网络结构中,使用得到能够提升模型的学习效果。本文讲使用Pytorch实现多头自注意力模块。一个典型的自注意力模块由Q、K、V三个矩阵的运算组成,Q、K、V三个矩阵都由原特征矩阵变换而来,所以本质上来说是对自身的运算。而多头注意力机制则是单头注意力机制的进化版,把每次attention运算分组(头)进行,能够从多个维度提炼特征信息。具体原理可以参看相关的科普文章,下面是Pytorch实现。import torch.nn as nnclass MHSA(nn.Mod原创 2022-02-16 22:37:38 · 9400 阅读 · 0 评论 -
Pytorch Dataloader内部随机数
pytorch的dataloader的__getittem__()方法,内部定义随机数,采用numpy.random.rand的方法,每次迭代从dataloader里取数据,都会产生拿到相同的随机数序列,相反,torch.rand的方法,每次迭代拿数据时,拿到的是不同的随机数序列。 # numpy生成随机数 def get_train_sample(self, ): track_idx = np.random.randint(0, len(self._tracks), (1, ))原创 2021-07-17 21:27:28 · 867 阅读 · 0 评论 -
深度学习经典模型整理(分领域)
NLP模型亮点Transformerself-attention, multi-head attentionCV原创 2021-05-10 21:39:36 · 287 阅读 · 0 评论