现代概率论的应用

概率论的发展史说明了理论与实际之间的密切关系。许多研究方向的提出,归根到底是有其实际背景的。反过来,当这些方向被深入研究后,又可指导实践,进一步扩大和深化应用范围。概率论作为数理统计学的理论基础是尽人皆知的。下面简略介绍一下概率论本身在各方面的应用情况。

在物理学方面,高能电子或核子穿过吸收体时,产生级联(或倍增)现象,在研究电了-光子级联过程的起伏问题时,要用到随机过程,常以泊松过程、弗瑞过程或波伊亚过程作为实际级联的近似,有时还要用到更新过程(见点过程)的概念。当核子穿到吸收体的某一深度时,则可用扩散方程来计算核子的概率分布。物理学中的放射性衰变,粒子计数器,原子核照相乳胶中的径迹理论和原子核反应堆中的问题等的研究,都要用到泊松过程和更新理论。湍流理论以及天文学中的星云密度起伏、辐射传递等研究要用到随机场的理论。探讨太阳黑子的规律及其预测时,时间序列方法非常有用。

化学反应动力学中,研究化学反应的时变率及影响这些时变率的因素问题,自动催化反应,单分子反应,双分子反应及一些连锁反应的动力学模型等,都要以生灭过程(见马尔可夫过程)来描述。

随机过程理论所提供的方法对于生物数学具有很大的重要性,许多研究工作者以此来构造生物现象的模型。研究群体的增长问题时,提出了生灭型随机模型,两性增长模型,群体间竞争与生尅模型,群体迁移模型,增长过程的扩散模型等等。有些生物现象还可以利用时间序列模型来进行预报。传染病流行问题要用到具有有限个状态的多变量非线性生灭过程。在遗传问题中,着重研究群体经过多少代遗传后,进入某一固定类和首次进入此固定类的时间,以及最大基因频率的分布等。

许多服务系统,如电话通信,船舶装卸,机器损修,病人候诊,红绿灯交换,存货控制,水库调度,购货排队,等等,都可用一类概率模型来描述。这类概率模型涉及的过程叫排队过程,它是点过程的特例。排队过程一般不是马尔可夫型的。当把顾客到达和服务所需时间的统计规律研究清楚后,就可以合理安排服务点。

在通信、雷达探测、地震探测等领域中,都有传递信号与接收信号的问题。传递信号时会受到噪声的干扰,为了准确地传递和接收信号,就要把干扰的性质分析清楚,然后采取办法消除干扰。这是信息论的主要目的。噪声本身是随机的,所以概率论是信息论研究中必不可少的工具。信息论中的滤波问题就是研究在接收信号时如何最大限度地消除噪声的干扰,而编码问题则是研究采取什么样的手段发射信号,能最大限度地抵抗干扰。在空间科学和工业生产的自动化技术中需要用到信息论和控制理论,而研究带随机干扰的控制问题,也要用到概率论方法。

概率论进入其他科学领域的趋势还在不断发展。值得指出的是,在纯数学领域内用概率论方法研究数论问题已经有很好的结果。在社会科学领域,特别是经济学中研究最优决策和经济的稳定增长等问题,也大量采用概率论方法。正如拉普拉斯所说:“生活中最重要的问题,其中绝大多数在实质上只是概率的问题。”

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荣华富贵8

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值