引言
机器学习(ML)作为人工智能的核心领域之一,其发展与众多数学方法息息相关。在线性分类模型中,支持向量机(SVM)作为一种经典的算法,广泛应用于分类和回归任务。支持向量机的优化目标通常基于线性规划,其通过寻找一个最优超平面,最大化类间间隔,从而实现高效的分类性能。本文将详细探讨线性规划在支持向量机中的应用,列举经典代码,并展望其未来发展趋势。
线性规划概述
线性规划(Linear Programming,LP)是一种优化方法,目的是求解线性约束下的最优化问题。其标准形式为:
其中,cc、xx、AA、bb 分别代表目标函数的系数、决策变量、约束矩阵和约束值。在线性规划中,常常通过单纯形法或者内点法等算法来求解最优解。
支持向量机的数学背景
支持向量机(SVM)主要用于分类问题,其基本思想是将数据点映射到高维空间,并通过一个超平面将不同类别的数据最大化地分开。具体而言,