二叉搜索树的操作

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/s1991721/article/details/79954977

二叉搜索树(Binary Search Tree)是一种特殊形式的二叉树,节点值大于左子树小于右子树。因为这种性质,导致它的中序遍历为升序。

  • 判断一颗二叉树是否为二叉搜索树
  • 二叉搜索树迭代器
  • 二叉搜索树查找
  • 二叉搜索树插入
  • 二叉搜索树删除
  • 二叉搜索树查找第K大的节点
  • 二叉搜索树在指定范围内查找符合条件的两个节点
  • 二叉搜索树是否平衡
  • 有序数组构造二叉搜索树

判断一颗二叉树是否为二叉搜索树

可以根据二叉搜索树的特性进行判断,节点值大于左子树小于右子树。

    private boolean isValidBST(TreeNode root) {
        if (root != null) {
            //一直到最左的左叶子节点
            if (!isValidBST(root.left)) return false;

            //第一次执行到这里时pre为空
            if (pre != null && root.val <= pre.val) return false;

            //第一次为pre赋值的为最小的叶子节点
            pre = root;

            return isValidBST(root.right);
        }
        return true;
    }

类似中序遍历

二叉搜索树迭代器

迭代器需要判断是否存在下一项,且按序迭代。
可以采用栈来完成,迭代器初始化时将根结点的所有左子树压栈,每次出栈时将出栈节点的所有右子树压栈。当栈为空时二叉搜索树迭代完成。

https://blog.csdn.net/smile_watermelon/article/details/47280679

    class BSTIterator {
        LinkedList<TreeNode> stack = new LinkedList<TreeNode>();

        public BSTIterator(TreeNode root) {
            TreeNode node = root;
            //压入根结点及所有的左孩子节点
            while (node != null) {
                stack.push(node);
                node = node.left;
            }
        }

        public boolean hasNext() {
            return !stack.isEmpty();
        }

        public TreeNode next() {
            TreeNode node = stack.pop();//1、根结点出栈(根结点小于右节点)

            TreeNode temp = node.right;
            while (temp != null) {
                stack.push(temp);//右节点入栈
                temp = temp.left;//右节点的左节点入栈
            }
            //所以栈顶值最小
            return node;
        }
    }

二叉搜索树查找

根据性质,小于根结点的去左子树去找,大于根结点的去右子树去找。

    private TreeNode search(TreeNode root, int key) {
        if (root == null) {
            return null;
        }
        if (key < root.val) {
            return search(root.left, key);
        } else if (key > root.val) {
            return search(root.right, key);
        } else {
            return root;
        }
    }

二叉搜索树插入

插入的节点必须符合二叉搜索树的性质

    private TreeNode insert(TreeNode root, int key) {

        if (root == null) {
            return new TreeNode(key);
        }

        if (key < root.val) {
            if (root.left == null) {
                root.left = new TreeNode(key);
            } else {
                insert(root.left, key);
            }
        }
        if (key > root.val) {
            if (root.right == null) {
                root.right = new TreeNode(key);
            } else {
                insert(root.right, key);
            }
        }

        return root;
    }

二叉搜索树删除

删除的节点如果是叶子节点,则直接删除。如果不是叶子节点,删除节点可能会导致树断掉,因此需要将删掉节点的子树连接到删掉节点的父节点上,且要保证连接后的二叉树为二叉搜索树。

    private TreeNode delete(TreeNode root, int key) {

        if (root == null) {
            return null;
        }

        if (key < root.val) {
            root.left = delete(root.left, key);
        } else if (key > root.val) {
            root.right = delete(root.right, key);
        } else {
            if (root.left == null) {
                return root.right;
            } else if (root.right == null) {
                return root.left;
            } else {
                root.val = min(root.right);
                root.right = delete(root.right, root.val);
            }
        }
        return root;
    }

    private int min(TreeNode root) {
        TreeNode node = root;
        while (node != null && node.left != null) {
            node = node.left;
        }
        return node.val;
    }

二叉搜索树查找第K大的节点

由二叉搜索树的性质右子树大于节点,优先遍历右子树,遍历次数为K时返回节点。

https://www.geeksforgeeks.org/kth-largest-element-in-bst-when-modification-to-bst-is-not-allowed/

    private void kThLargest(TreeNode node, int k) {

        if (node == null || c > k) {
            return;
        }

        kThLargest(node.right, k);

        c++;
        if (c == k) {
            kThNode = node;
            return;
        }

        kThLargest(node.left, k);

    }

二叉搜索树在指定范围内查找符合条件的两个节点

使用到了TreeSet
set.floor(num)用于返回set中小于num的最大的项
set.ceiling(num)用于返回set中大于num的最小的项

    private boolean containsNearbyAlmostDuplicate(int[] nums, int k, int t) {

        if (nums == null || nums.length == 0) {
            return false;
        }

        if (k <= 0 || t < 0) {
            return false;
        }

        TreeSet<Integer> set = new TreeSet<Integer>();

        for (int i = 0; i < nums.length; i++) {
            int num = nums[i];

            if ((set.floor(num) != null && num - set.floor(num) <= t)
                    || set.ceiling(num) != null && set.ceiling(num) - num <= t) {
                return true;
            } else {
                set.add(num);
            }

            if (i >= k) {//控制窗口大小
                set.remove(nums[i - k]);
            }
        }
        return false;
    }

二叉搜索树是否平衡

平衡的条件是左右子树的高度差不大于1。

    private boolean isBalance(TreeNode root) {
        if (root == null) {
            return true;
        }
        if (Math.abs(height(root.left) - height(root.right)) > 1) {
            return false;
        }

        return isBalance(root.left) && isBalance(root.right);
    }

    private int height(TreeNode node) {

        if (node == null) {
            return 0;
        }

        int left = height(node.left);
        int right = height(node.right);

        return (left > right ? left : right) + 1;

    }

有序数组构造二叉搜索树

有序数组中间节点为根结点,以此将一个数组分成两个数组。
将问题缩小,分而治之,明显的递归操作。

    private TreeNode sortedArrayToBST(int[] nums) {
        if (nums.length == 0) {
            return null;
        }

        if (nums.length == 1) {
            return new TreeNode(nums[0]);
        }

        int center = nums.length / 2;

        TreeNode root = new TreeNode(nums[center]);

        int[] left = new int[center];
        int[] right = new int[nums.length - center - 1];

        System.arraycopy(nums, 0, left, 0, center);
        System.arraycopy(nums, center + 1, right, 0, nums.length - center - 1);

        root.left = sortedArrayToBST(left);
        root.right = sortedArrayToBST(right);

        return root;
    }

GitHub

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页