物联网深度学习框架:技术与应用解析
1. 引言
近年来,深度学习(DL)备受关注。人工智能(AI)的概念早在1956年就已提出,但直到最近才广泛流行。过去,数据量有限,难以做出准确预测。然而,近年来数据量显著增长,统计显示,到2020年,累计数据量将从4.4ZB增加到约44ZB。为了应对数据的增长,需要更先进的算法和更大的计算机存储。
AI是一种使机器模仿人类行为的过程。它通过研究人类大脑的思考、学习、决策和解决问题的方式来实现。利用AI技术,可以根据过去和现在的经验训练模型,机器会根据新信息调整反应,从而执行类似人类的任务。AI系统包括设计各种组件、部分和学习算法,但最终结果难以确定。因此,AI的主要目标是拥有能够反映人类行为的系统或程序。
机器学习(ML)和深度学习(DL)都是AI的子集。ML诞生于20世纪90年代初,在统计学、软件工程和神经科学等领域有广泛应用。它利用统计技术使机器提高理解能力,但存在一些局限性。例如,ML算法难以处理高维数据,无法解决自然语言处理和图像识别等基本AI问题,特征提取也是一个难题。
相比之下,DL模型能够在软件工程师的少量指导下自行提取正确特征,部分解决了维度问题。在数据量较少时,ML和DL的性能相似,但随着数据量的增加,DL的表现明显优于ML。不过,DL计算对硬件要求较高,需要GPU支持,训练时间也较长,但在测试数据时执行时间更短。
DL是ML的进一步发展,它直接从数据中理解特征和任务。近年来,DL的应用不断增加,主要原因有三个:一是DL策略在图像分类方面比人类更准确;二是技术的更新使得训练深度网络的时间减少;三是DL所需的大量分层数据近年来显著增长。
物联网(IoT)与DL算法的集
 
                       
                             
                         
                             
                             
                           
                           
                             超级会员免费看
超级会员免费看
                                         
                   订阅专栏 解锁全文
                订阅专栏 解锁全文
                 
             
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   1203
					1203
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            