二维dp
洛谷p2701巨大的牛棚
和p1387一模一样,只不过数据更大,先用一个二维前缀和做了一遍,发现也能AC,最久一个点44ms
#include<bits/stdc++.h>
using namespace std;
int a[1010][1010]={0},s[1010][1010],n,t;
inline void init()
{
scanf("%d%d",&n,&t);
for(int i=1;i<=t;i++)
{
int x,y;
scanf("%d%d",&x,&y);
a[x][y]=1;
}
return;
}
inline void first()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)//处理当前点左方和上方的树的个数
{
s[i][j]=a[i][j];
s[i][j]+=s[i-1][j];
s[i][j]+=s[i][j-1];
s[i][j]-=s[i-1][j-1];
}
return;
}
inline void dp(int len)
{
for(int i=len;i<=n;i++)
for(int j=len;j<=n;j++)
if(s[i][j]-s[i][j-len]-s[i-len][j]+s[i-len][j-len]==0)//如果(i,j)为右下角存在边长为len的正方形
{
dp(len+1);
return;
}
printf("%d",len-1);
exit(0);//跳回主程序
}
int main()
{
init();
first();
dp(1);
return 0;
}
然后写了一个正宗的二维dp
(顺便学了一下读入优化)
s[i][j]即以(i,j)为右下角的最大正方形
可以认为对于s[i][j],s[i-1][j-1]和s[i]][j-1]共同框定s[i][j]左侧最大的列数
s[i-1][j-1]和s[i-1][j]共同框定上方最大的行数。
#include<bits/stdc++.h>
using namespace std;
int s[1010][1010]={0},a[1010][1010]={0},ans=0,n,t;
inline int read(int &num)
{
num=0;
char c=getchar();
for(;isdigit(c)==0;c=getchar());//isdigit(c)若c在'0'-'9'返回非0值,否则返回0
for(;isdigit(c)!=0;c=getchar())num=num*10+c-'0';
}
inline void init()
{
read(n);read(t);
for(int i=1;i<=t;i++)
{
int x,y;
read(x);read(y);
a[x][y]=1;
}
return;
}
inline void dp()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(a[i][j]==0)//如果当前没有树
{
s[i][j]=min(s[i-1][j-1],min(s[i-1][j],s[i][j-1]))+1;
ans=max(ans,s[i][j]);
}
return;
}
int main()
{
init();
dp();
printf("%d",ans);
return 0;
}
洛谷p1736创意吃鱼法
s[i][j]和s1[i][j]分别存储(i,j)向斜左上方和斜右上方能吃到的最大鱼数
t1和t2则是前缀和和后缀和数组
#include<bits/stdc++.h>
using namespace std;
int s[2510][2510]={0},s1[2510][2510]={0},a[2510][2510]={0},ans=0,n,m,t;
int t1[2510][2510]={0},t2[2510][2510]={0};
inline int read(int &num)
{
num=0;
char c=getchar();
for(;isdigit(c)==0;c=getchar());
for(;isdigit(c)!=0;c=getchar())num=num*10+c-'0';
}
inline void init()
{
read(n);read(m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
read(a[i][j]);
return;
}
inline void first()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
t1[i][j]=a[i][j];
t1[i][j]+=t1[i-1][j];
t1[i][j]+=t1[i][j-1];
t1[i][j]-=t1[i-1][j-1];
}
for(int i=1;i<=n;i++)
for(int j=m;j>=1;j--)
{
t2[i][j]=a[i][j];
t2[i][j]+=t2[i-1][j];
t2[i][j]+=t2[i][j+1];
t2[i][j]-=t2[i-1][j+1];
}
return;
}
inline void dp()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(a[i][j]==1)
{
for(int len=s[i-1][j-1];len>=0;len--)//搜索s[i][j]的最大值且该值不可能大于s[i-1][j-1]+1
if(t1[i][j]-t1[i-len-1][j]-t1[i][j-len-1]
+t1[i-len-1][j-len-1]==len+1)
{
s[i][j]=len+1;
break;
}
ans=max(ans,s[i][j]);
}
for(int i=1;i<=n;i++)//秘技-反向
for(int j=m;j>=1;j--)
if(a[i][j]==1)
{
for(int len=s1[i-1][j+1];len>=0;len--)
if(t2[i][j]-t2[i-len-1][j]-t2[i][j+len+1]
+t2[i-len-1][j+len+1]==len+1)
{
s1[i][j]=len+1;
break;
}
ans=max(ans,s1[i][j]);
}
return;
}
int main()
{
init();
first();
dp();
printf("%d\n",ans);
return 0;
}