dp day3/4-二维dp

二维dp

洛谷p2701巨大的牛棚

和p1387一模一样,只不过数据更大,先用一个二维前缀和做了一遍,发现也能AC,最久一个点44ms

#include<bits/stdc++.h>
using namespace std;
int a[1010][1010]={0},s[1010][1010],n,t;
inline void init()
{
    scanf("%d%d",&n,&t);
    for(int i=1;i<=t;i++)
    {
    	int x,y;
    	scanf("%d%d",&x,&y);
        a[x][y]=1;
    }
    return;
}

inline void first()
{
	for(int i=1;i<=n;i++)
	for(int j=1;j<=n;j++)//处理当前点左方和上方的树的个数
	{
	    s[i][j]=a[i][j];
	    s[i][j]+=s[i-1][j];
	    s[i][j]+=s[i][j-1];
	    s[i][j]-=s[i-1][j-1];
    }
    return;
}


inline void dp(int len)
{
	for(int i=len;i<=n;i++)
	for(int j=len;j<=n;j++)
	if(s[i][j]-s[i][j-len]-s[i-len][j]+s[i-len][j-len]==0)//如果(i,j)为右下角存在边长为len的正方形
	{
	    dp(len+1);
	    return;
	}
	printf("%d",len-1);
	exit(0);//跳回主程序
}

int main()
{
	init();
	first();
	dp(1);
	return 0;
}
然后写了一个正宗的二维dp

(顺便学了一下读入优化)

s[i][j]即以(i,j)为右下角的最大正方形

可以认为对于s[i][j],s[i-1][j-1]和s[i]][j-1]共同框定s[i][j]左侧最大的列数

s[i-1][j-1]和s[i-1][j]共同框定上方最大的行数。

#include<bits/stdc++.h>
using namespace std;
int s[1010][1010]={0},a[1010][1010]={0},ans=0,n,t;
inline int read(int &num)
{
	num=0;
	char c=getchar();
	for(;isdigit(c)==0;c=getchar());//isdigit(c)若c在'0'-'9'返回非0值,否则返回0
	for(;isdigit(c)!=0;c=getchar())num=num*10+c-'0';
}

inline void init()
{
	read(n);read(t);
	for(int i=1;i<=t;i++)
	{
		int x,y;
		read(x);read(y);
		a[x][y]=1;
	}
	return;
}

inline void dp()
{
	for(int i=1;i<=n;i++)
	for(int j=1;j<=n;j++)
	if(a[i][j]==0)//如果当前没有树
	{
		s[i][j]=min(s[i-1][j-1],min(s[i-1][j],s[i][j-1]))+1;
		ans=max(ans,s[i][j]);
	}
	return;
}

int main()
{
        init();
	dp();
	printf("%d",ans);
	return 0;
}
洛谷p1736创意吃鱼法

s[i][j]和s1[i][j]分别存储(i,j)向斜左上方和斜右上方能吃到的最大鱼数

t1和t2则是前缀和和后缀和数组

#include<bits/stdc++.h>
using namespace std;
int s[2510][2510]={0},s1[2510][2510]={0},a[2510][2510]={0},ans=0,n,m,t;
int t1[2510][2510]={0},t2[2510][2510]={0};
inline int read(int &num)
{
	num=0;
	char c=getchar();
	for(;isdigit(c)==0;c=getchar());
	for(;isdigit(c)!=0;c=getchar())num=num*10+c-'0';
}

inline void init()
{
    read(n);read(m);
    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
    read(a[i][j]);
    return;
}

inline void first()
{
	for(int i=1;i<=n;i++)
	for(int j=1;j<=m;j++)
	{
	    t1[i][j]=a[i][j];
	    t1[i][j]+=t1[i-1][j];
	    t1[i][j]+=t1[i][j-1];
	    t1[i][j]-=t1[i-1][j-1];
    }
    for(int i=1;i<=n;i++)
	for(int j=m;j>=1;j--)
	{
	    t2[i][j]=a[i][j];
	    t2[i][j]+=t2[i-1][j];
	    t2[i][j]+=t2[i][j+1];
	    t2[i][j]-=t2[i-1][j+1];
    }
    return;
}

inline void dp()
{
	for(int i=1;i<=n;i++)
	for(int j=1;j<=m;j++)
	if(a[i][j]==1)
	{
		for(int len=s[i-1][j-1];len>=0;len--)//搜索s[i][j]的最大值且该值不可能大于s[i-1][j-1]+1
		if(t1[i][j]-t1[i-len-1][j]-t1[i][j-len-1]
		+t1[i-len-1][j-len-1]==len+1)
		{
		    s[i][j]=len+1;
		    break;
		}
		ans=max(ans,s[i][j]);
	}
	for(int i=1;i<=n;i++)//秘技-反向
	for(int j=m;j>=1;j--)
	if(a[i][j]==1)
	{
		for(int len=s1[i-1][j+1];len>=0;len--)
		if(t2[i][j]-t2[i-len-1][j]-t2[i][j+len+1]
		+t2[i-len-1][j+len+1]==len+1)
		{
		    s1[i][j]=len+1;
		    break;
		}
		ans=max(ans,s1[i][j]);
	}
	return;
}

int main()
{
    init();
    first(); 
    dp();
    printf("%d\n",ans);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值