WC2008观光游览【BZOJ2595】【斯坦纳树】

WC2008观光游览【BZOJ2595】【斯坦纳树】

神奇的解法


题目传送点

想了解斯坦纳树的戳这


其实这种表格的题目还可以写插头DP(•‾̑⌣‾̑•)✧˖°
(不会= =|||)
我们忽略刚刚的话题,说说这个斯坦纳树。

《斯坦纳树问题及其推广》说道:

斯坦纳树问题属于NP困难问题,因此看来不可能出现有效算法,即所谓的多项式算法来处理这一问题。目前文献中所提出的算法只不过是遍数法的种种改进,即在具体计算过程中,根据给定的实际问题,利用某些准则可以抛弃一部分情况不予考虑

也就是说,大部分的斯坦纳树问题都是构造的,没有一个特定的解法,我们学长还和我们抱怨说:考一些莫名其妙的题┑( ̄▽  ̄)┍(闲话不多说,题解上)

题解

[纯暴力]

太暴力了这种办法,枚举每一个不是风景的格子按不安排志愿者 O((NM)!) 的复杂度,(我当时做练习就是用的这种),只有二十分

[YY]

SPFA Dijkstra , Floyd ,对每两个点之间做一次最短路,再求一个最小生成树,但是这钟算法很好卡,当时就没写,结果有 60 分,( `)3’)▃▃▃▅▆▇▉

[插头DP]

不会。。。。

[斯坦纳树]

这个才是重点。
我们依然定义一个状态 f[i][j][s] 表示一棵树(显然,题目要求的那条路径一定是一棵树),以 (i,j) 为根,风景选择的集合为 s (最多只有十个风景,用二进制来表示哪个点选了)的最短路径是多长,于是有下面的转移:

  • f[i][j][s]=f[i][j][s]+f[i][j][ss]val(i,j)(ss)(两棵树的合并,会有一个点算重了,要减掉,枚举 s 的时候, s 不能为 ,也不能等于 s
  • f[i][j][s]=min(f[x][y][s]+val(i,j))(( i,j) 从周围四个点转移过来,当然,如果 (i,j) 是个景点,那么, s 要比 s 多一个点)

预处理:
首先f[i][j][s]赋值为最大值 INF ,在读取每个点的权值的时候, f[i][j][]=val(i,j) ,如果 (i,j) 是景点 f[i][j][(i,j)]=0 ,因为第二个转移很像 SPFA 里面的松弛操作,我们就可以采用 SPFA 的办法来转移(其实个人觉得第一个转移像 Floyd )。

[代码]

(大家帮我向 CSDN 提个建议✧ (≖ ‿ ≖)✧, markdown 的插入代码的格式太丑了,没有 html 的代码块那么好看,但是 markdown 好用些)

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <queue>
#include <cstring>
using namespace std;

const int maxn = 13, maxm = 1035, INF = 0x7fffffff / 3, bai = 102501, shi = 1024;
const int dirx[] = {0, 0, 1, -1}, diry[] = {1, -1, 0, 0};
int n, m, k, M, map[maxn][maxn], f[maxn][maxn][maxm], fa[maxn][maxn][maxm], ord[maxn][maxn];
bool used[1200130], ans[maxn][maxn];
queue<int>Q;

int calc(int x, int y, int s) {return x * bai + y * shi + s;}

bool isSubet(int a, int b) {return (a | b) == a;}

void spfa(int sta) {
    while(!Q.empty()) {
        int u = Q.front(); Q.pop();
        int x = u / bai, y = u % bai / shi;
        for(int d = 0; d < 4; d++) {
            int nx = x + dirx[d], ny = y + diry[d];
            if(nx < 1 || ny < 1 || nx > n || ny > m) continue;
            int ns = sta | ord[nx][ny];
            if(f[nx][ny][ns] > f[x][y][sta] + map[nx][ny]) {
                f[nx][ny][ns] = f[x][y][sta] + map[nx][ny];
                fa[nx][ny][ns] = u;
                int k = calc(nx, ny, ns);
                if(!used[k] && sta == ns) {used[k] = true; Q.push(k);}
            }
        }
        used[u] = false;
    }
}

void initForOut(int x, int y, int sta) {
    ans[x][y] = true;
    int k = fa[x][y][sta];
    if(!k) return;
    int i = k / bai, j = k % bai / shi, s = k % bai % shi;
    initForOut(i, j, s);
    if(i == x && j == y) initForOut(i, j, sta - s);
}

void out() {
    for(int i = 1; i <= n; i++) {
        for(int j = 1; j <= m; j++)
            if(ans[i][j])
                if(map[i][j]) putchar('o');
                else putchar('x');
            else putchar('_');
        putchar('\n');
    }
}

int main() {
    freopen("trip.in", "r", stdin);
    freopen("trip.out", "w", stdout);

    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= m; j++)
            for(int s = 0; s < 1024; s++) f[i][j][s] = INF;
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= m; j++) {
            scanf("%d", &map[i][j]);
            f[i][j][0] = map[i][j];
            if(!map[i][j]) f[i][j][1 << (k++)] = 0, ord[i][j] = 1 << (k - 1);
        }
    M = 1 << k;
    for(int sta = 1; sta < M; sta++) {
        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= m; j++) {
                for(int s = 1; s < sta; s++) {
                    if(isSubet(sta, s)) {
                        if(f[i][j][sta] > f[i][j][s] + f[i][j][sta - s] - map[i][j]) {
                            f[i][j][sta] = f[i][j][s] + f[i][j][sta - s] - map[i][j];
                            fa[i][j][sta] = calc(i, j, s);
                        }
                    }
                }
                if(f[i][j][sta] != INF) Q.push(calc(i, j, sta)), used[calc(i, j, sta)] = true;
            }
        }
        spfa(sta);
    }

    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= m; j++)
            if(!map[i][j]) {
                printf("%d\n", f[i][j][M - 1]);
                initForOut(i, j, M - 1);
                out();
                return 0;
            }

    return 0;
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值