概述:
本章开始进入无监督学习的内容。聚类方法将相似的对象分到同一个簇中。
簇识别:“簇识别给出聚类结果的含义。假定有一些数据,现在将相似数据归到一起,簇识别会告诉我们这些簇到底都是些什么。聚类与分类的最大不同在于,分类的目标事先已知,而聚类则不一样。因为其产生的结果与分类相同,而只是类别没有预先定义,聚类有时也被称为无监督分类(unsupervised classification)。”
K均值聚类:“k均值是发现给定数据集的k个簇的算法。簇个数k是用户给定的,每一个簇通过其质心(centroid),即簇中所有点的中心来描述。”
优缺点:
优点:容易实现。
缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢。
适用数据类型:数值型数据。
二分k均值算法:
使用SSE(误差平方和)来评估聚类效果。首先将所有的点视为一个簇,然后将簇一分为二,选择其中一个簇继续划分,选择簇的标准为对其进行划分能否在最大程度上降低SSE的值。如此重复下去,直到簇的数目达到用户指定的数目为止。
另一种做法是选择SSE最大的组进行划分,直到簇的数目达到用户指定的数目为止。示例代码实现的是第二种做法。
代码学习:
K均值聚类伪代码:
创建k个点作为起始质心(经常是随机选择)
当任意一个点的簇分配结果发生改变时
对数据集中的每个数据点
对每个质心
计算质心与数据点之间的距离
将数据点分配到距其最近的簇
对每一个簇,计算簇中所有点的均值并将均值作为质心
加载数据函数:
def loadDataSet(fileName):
dataMat = []
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
#map()此处意为用float()作用于curLine每一个元素
fltLine = map(float,curLine) #map all elements to float()
dataMat.append(fltLine)
return dataMat
#计算两个向量的欧氏距离
def distEclud(vecA, vecB):
#power()此处意为对(vecA-vecB)的每个值求2次方
return sqrt(sum(power(vecA - vecB, 2)))
#构建包含随机k个质心的集合,参数k为包含随机质心的个数
def randCent(dataSet, k):
n = shape(dataSet)[1]
centroids = mat(zeros((k,n)))
for j in range(n):
minJ = min(dataSet[:,j])
rangeJ = float(max(dataSet[:,j]) - minJ)
#random.rand()生成k*1个在(0,1)之间的数
centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
return centroids
k均值算法
#输入参数dataSet数据集,k簇的数目,distMeas距离计算函数可选,createCent创建初始质心函数可选
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
m = shape(dataSet)[0]
#clusterAssment用于记录每条数据所属簇的索引与到其的距离的平方
clusterAssment = mat(zeros((m,2)))
centroids = createCent(dataSet, k)
#记录簇质心的改变情况
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m): #对每个数据点
minDist = inf; minIndex = -1
for j in range(k): #对每个质心
distJI = distMeas(centroids[j,:],dataSet[i,:])
if distJI < minDist:
minDist = distJI; minIndex = j
if clusterAssment[i,0] != minIndex: clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2
print centroids
for cent in range(k):
#获取被分配到该簇中的所有点,nonzero()返回不为0的值的索引,.A将矩阵转为数组
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]
#mean()返回平均值,更新簇的质心
centroids[cent,:] = mean(ptsInClust, axis=0)
return centroids, clusterAssment
二分k均值聚类算法:
伪代码:
将所有点看成一个簇
当簇数目小于k时
对于每一个簇
计算总误差
在给定的簇上面进行K均值聚类(K=2)
计算将该簇一分为二之后的总误差
选择使得误差最小的那个簇进行划分操作
以下二分k均值聚类算法是以每次SSE最大的簇进行划分,直到达到用户给定的划分次数k的算法:
#输入参数dataSet数据集,k最大划分的簇个数,distMeans距离计算函数可选
def biKmeans(dataSet, k, distMeas=distEclud):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))
#用matrix.mean求每一列特征的平均值,用ndarray.tolist将数组转为列表
centroid0 = mean(dataSet, axis=0).tolist()[0]
centList =[centroid0] #新建记录簇情况的列表
for j in range(m):
clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2
while (len(centList) < k):
lowestSSE = inf
for i in range(len(centList)):
#获取在当前簇里的点
ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]
#以kMeans(,2,)进行二分划分,返回两个新的质心与点到质心误差
centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)
sseSplit = sum(splitClustAss[:,1]) #划分后的sse
sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1]) ##划分前的sse
print "sseSplit, and notSplit: ",sseSplit,sseNotSplit
if (sseSplit + sseNotSplit) < lowestSSE:
bestCentToSplit = i
bestNewCents = centroidMat
bestClustAss = splitClustAss.copy()
lowestSSE = sseSplit + sseNotSplit
#更新簇的划分结果
bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList)
bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
print 'the bestCentToSplit is: ',bestCentToSplit
print 'the len of bestClustAss is: ', len(bestClustAss)
#将一个簇以决定划分的两个新簇代替
centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]
centList.append(bestNewCents[1,:].tolist()[0])
#再分配新簇与sse
clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss
return mat(centList), clusterAssment
小结
同为无监督的学习方法,,二分k均值聚类算法作为k均值聚类算法的改进,克服了k均值聚类算法诸如结果易受初始选择质心的影响的缺点,聚类效果也好于后者。除了k均值聚类算法,另外被称为层次聚类的算法也被广泛使用。