s4t5u6v7
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
22、机器学习:Python 环境搭建、统计资源与数学符号基础
本文介绍了机器学习中Python环境的搭建方法,推荐了丰富的统计学习资源和常用的Python库API文档,分享了统计问题的咨询途径与高效提问技巧,并详细讲解了基本数学符号在机器学习中的应用。通过实际线性回归案例,展示了从环境配置、数据处理到模型训练与可视化的完整流程,帮助读者系统掌握机器学习的基础知识体系,为深入学习和实践打下坚实基础。原创 2025-10-02 10:36:15 · 8 阅读 · 0 评论 -
21、非参数统计测试与独立性测试详解
本文详细介绍了非参数统计测试中的Friedman测试和用于分类变量独立性判断的Pearson卡方检验。Friedman测试适用于多个配对样本的分布比较,是重复测量ANOVA的非参数版本;Pearson卡方检验则用于判断两个分类变量是否相关,广泛应用于特征选择。文章结合Python代码示例,展示了如何使用SciPy库进行实际计算,并通过决策流程图、对比表格和应用案例帮助读者系统掌握不同统计测试方法的选择与应用,适用于数据分析和机器学习领域的实践参考。原创 2025-10-01 11:08:30 · 9 阅读 · 0 评论 -
20、非参数统计中的秩相关与显著性检验
本文深入介绍了非参数统计中的秩相关与显著性检验方法,适用于处理非高斯分布的数据。详细讲解了Spearman和Kendall秩相关系数的原理与应用,以及Mann-Whitney U、Wilcoxon符号秩和Kruskal-Wallis H等非参数显著性检验方法。通过Python代码示例演示了各类方法的实际操作,并结合医学研究、市场调研和教育评估等场景说明其广泛应用。文章还提供了方法选择流程图与对比表格,帮助读者系统掌握在不同数据条件下如何正确选用统计方法,提升数据分析与机器学习项目中的决策准确性。原创 2025-09-30 14:25:31 · 6 阅读 · 0 评论 -
19、数据处理与分析:长尾、变换、总结及相关性
本文深入探讨了数据处理与分析中的关键方法,涵盖长尾现象的识别与处理、幂变换(如Box-Cox和对数变换)以恢复正态性、适用于非高斯分布的五数概括汇总技术,以及在未知分布情况下衡量变量关联的非参数秩相关方法——斯皮尔曼和肯德尔相关。通过Python示例代码,展示了各项技术的实际应用,帮助读者更好地理解、描述和分析复杂数据分布,提升数据分析的准确性和可靠性。原创 2025-09-29 14:42:04 · 7 阅读 · 0 评论 -
18、数据正态性检验与正态化处理
本文系统介绍了数据正态性检验与正态化处理方法。涵盖Shapiro-Wilk、D'Agostino's K2和Anderson-Darling三种常用正态性检验的原理与实现,并解释了p值与统计量的判断标准。针对非正态数据,分析了样本大小、数据分辨率、极端值、长尾等影响因素,提出了增加样本量、去除异常值、截断处理及多种幂变换(如对数、平方根、Box-Cox)等正态化技术。同时讨论了在满足一定条件时可直接使用参数方法的可行性,为数据分析和机器学习中的数据预处理提供了完整解决方案。原创 2025-09-28 15:40:31 · 2 阅读 · 0 评论 -
17、统计预测与非参数方法:从线性回归到正态性检验
本文深入探讨了统计预测与非参数方法的核心内容,涵盖线性回归中的预测区间构建、非参数数据的处理方法及其在机器学习中的应用。文章详细介绍了如何通过可视化(如直方图和Q-Q图)与统计检验(如Shapiro-Wilk、D'Agostino K2和Anderson-Darling检验)判断数据的正态性,并据此选择合适的参数或非参数统计方法。同时,阐述了数据排序在非参数方法中的关键作用,以及多种秩相关与显著性检验的应用场景,为实际数据分析提供了系统性的指导。原创 2025-09-27 13:16:59 · 3 阅读 · 0 评论 -
16、非参数置信区间与预测区间的计算方法
本文介绍了在不知道数据分布或模型假设不成立的情况下,使用非参数方法计算置信区间和预测区间的实用技术。重点讲解了基于自助法的非参数置信区间计算流程,并通过实例演示了其具体实现。同时,文章详细区分了置信区间与预测区间的概念,阐述了预测区间在量化单点预测不确定性中的重要性,给出了线性回归中预测区间的计算方法及可视化示例,并探讨了非线性模型下预测区间的计算挑战与可行方案。最后总结了相关方法的应用价值与未来发展方向。原创 2025-09-26 16:14:12 · 4 阅读 · 0 评论 -
15、统计区间:从容忍区间到置信区间的深入解析
本文深入解析了估计统计中的容忍区间和置信区间,涵盖其定义、计算方法及在机器学习与数据分析中的实际应用。详细介绍了高斯分布下容忍区间的计算示例,分类准确率的置信区间估算,并探讨了基于自助法的非参数置信区间构建方法。通过对比两种区间的应用场景,帮助读者更好地理解数据边界与参数估计的不确定性,提升模型评估的可靠性。原创 2025-09-25 12:54:06 · 5 阅读 · 0 评论 -
14、机器学习中的交叉验证与估计统计入门
本文介绍了机器学习中k折交叉验证的原理与k值选择策略,包括常见变体如LOOCV、分层交叉验证和重复交叉验证,并结合Python示例演示其应用。同时,文章深入探讨了估计统计的三大核心:效应大小、区间估计和元分析,阐述其在弥补传统假设检验不足方面的优势。最后,展示了交叉验证与估计统计的结合使用方法及其在医学、心理学、金融等领域的实际应用,帮助读者更全面地评估模型性能和量化数据关系。原创 2025-09-24 16:49:32 · 30 阅读 · 0 评论 -
13、机器学习中的统计重采样与评估方法
本文介绍了机器学习中常用的统计重采样方法,重点讲解了Bootstrap和k-折交叉验证的原理、步骤及实现方式。Bootstrap通过有放回抽样估计模型性能和参数不确定性,而k-折交叉验证通过数据划分多次训练与评估,提供更可靠的模型技能估计。文章还介绍了分层交叉验证和重复交叉验证等变体,并提供了Python中的实际代码示例,帮助读者深入理解并应用这些方法进行模型评估与选择。原创 2025-09-23 14:56:54 · 5 阅读 · 0 评论 -
12、统计假设检验与抽样方法全解析
本文全面解析了统计假设检验与抽样方法的核心概念与应用。内容涵盖假设检验中的原假设、p值、显著性水平及两类错误,深入探讨统计功效与功效分析在实验设计中的关键作用,特别是学生t检验的样本量估算与功效曲线绘制。同时介绍了统计抽样的类型、误差来源及重采样方法如自助法和交叉验证的应用价值。结合Python示例与流程图,为科研与机器学习实践提供了系统的统计方法指导。原创 2025-09-22 10:44:50 · 2 阅读 · 0 评论 -
10、统计分析中的相关性与显著性检验
本文深入介绍了统计分析中的皮尔逊相关系数与多种显著性检验方法,包括学生t检验、配对学生t检验、单因素方差分析(ANOVA)和重复测量ANOVA。通过理论解释、公式展示及Python代码示例,帮助读者理解不同检验方法的适用场景、零假设含义及其在实际数据分析中的应用。文章还提供了选择合适检验方法的流程图与实践建议,强调数据分布假设和代码实现中的注意事项,为机器学习和数据科学领域的模型比较与关系分析提供坚实的统计基础。原创 2025-09-20 13:35:04 · 4 阅读 · 0 评论 -
9、统计中的临界值、协方差与相关性分析
本文深入讲解了统计学中的临界值与协方差及相关性分析。介绍了临界值在假设检验中的作用、定义、使用方法及在不同分布下的计算方式,并通过Python示例演示了高斯分布、学生t分布和卡方分布的临界值计算。同时,文章探讨了变量间的协方差与皮尔逊相关系数,阐述了其意义、计算方法与应用场景,如特征选择、数据可视化和风险评估。最后总结了相关性分析的操作步骤与注意事项,并展望了未来在复杂数据环境下的应用方向。原创 2025-09-19 14:43:33 · 3 阅读 · 0 评论 -
8、统计分布:高斯、t 分布与卡方分布详解
本文深入讲解了统计学中的三种关键分布:高斯分布、学生t分布和卡方分布,涵盖其定义、参数、概率密度函数(PDF)与累积密度函数(CDF)的计算与可视化方法。文章结合Python代码示例,演示如何绘制各类分布曲线,并探讨了它们在质量控制、金融风险评估和独立性检验等实际场景中的应用。同时,介绍了统计假设检验中p值的理解与常见误区,以及自由度在校正样本统计量中的作用。最后提供了拓展实践建议和统计分布分析流程图,帮助读者系统掌握分布建模与数据分析的核心技能。原创 2025-09-18 14:58:39 · 8 阅读 · 0 评论 -
7、统计学中的中心极限定理与假设检验
本文深入探讨了统计学中的核心概念——中心极限定理与假设检验。通过掷骰子的模拟实验,直观展示了样本均值如何趋近于高斯分布,验证了中心极限定理的有效性。文章进一步介绍了其在机器学习中的应用,如模型性能比较和置信区间的构建。同时,系统讲解了假设检验的基本原理,包括零假设与备择假设、p值与临界值的解释、常见误解及两类统计错误,并结合代码示例帮助理解。最后总结了操作流程与关键知识点,为数据分析和模型评估提供了坚实的理论基础。原创 2025-09-17 12:16:42 · 3 阅读 · 0 评论 -
6、机器学习中的随机数、大数定律与中心极限定理
本文深入探讨了随机数、大数定律和中心极限定理在机器学习中的关键作用。从随机数种子的设定时机到如何合理控制算法中的随机性,文章详细解释了大数定律如何确保样本均值逼近总体均值,以及中心极限定理如何使样本均值分布趋于高斯分布,并支持模型性能的统计推断。通过代码示例演示了两大定理的实际表现,并阐述了它们在训练数据选择、测试数据划分、模型评估与比较中的应用。最后总结了这些统计原理对提升模型可靠性与准确性的深远影响。原创 2025-09-16 16:12:05 · 4 阅读 · 0 评论 -
5、数据可视化与随机数生成:Python实战指南
本文介绍了数据可视化中散点图的使用方法及其在分析变量关系中的作用,并深入探讨了机器学习中的随机性来源与控制方法。详细讲解了Python标准库和NumPy中随机数的生成技术,包括浮点数、整数、高斯值的生成及列表抽样操作。同时,文章还阐述了设置随机数种子的重要性,以及在实验复现、代码调试和生产环境中的应用,提供了控制随机性的多种策略,如多次实验取平均、集成学习和正则化。最后解答了常见问题并展望了未来发展方向。原创 2025-09-15 16:49:00 · 8 阅读 · 0 评论 -
4、数据统计与可视化基础:从高斯分布到简单绘图
本文介绍了数据统计与可视化的基本概念和方法,重点讲解了高斯分布的统计指标如中位数、方差和标准差的计算与意义,并通过Python示例代码演示了如何使用NumPy和Matplotlib进行数据处理与绘图。文章详细阐述了线图、柱状图、直方图和箱线图等常见图形的应用场景及实现方式,帮助读者理解数据分布、比较类别关系以及展示变量趋势。最后总结了数据可视化的工作流程,为后续的数据分析和机器学习任务提供基础支持。原创 2025-09-14 09:06:13 · 5 阅读 · 0 评论 -
3、机器学习中的统计方法与高斯分布解读
本文深入探讨了统计方法在机器学习预测建模中的关键作用,涵盖问题构建、数据理解、清洗、选择、准备到模型评估与预测的全流程。重点解析了高斯分布的特性及其描述方式,包括均值、方差和标准差的应用,并通过代码示例展示数据分布分析方法。文章还总结了各阶段适用的统计技术,提出系统化的应用建议,帮助提升模型性能与可靠性。原创 2025-09-13 11:44:14 · 4 阅读 · 0 评论 -
2、统计学与机器学习:概念、差异与融合
本文深入探讨了统计学与机器学习之间的关系,阐述了统计学作为机器学习先决条件的重要性,并比较了两者在视角、重点和方法上的差异。文章详细介绍了统计方法在机器学习各阶段(如数据清洗、标准化、特征选择、模型评估)中的具体应用,同时展望了统计学与机器学习在深度学习可解释性、因果推断和AutoML等方向的融合趋势。通过理解两者的互补性,读者可以更好地构建高性能且可解释的模型,应对实际数据分析挑战。原创 2025-09-12 12:31:08 · 5 阅读 · 0 评论 -
1、机器学习中的统计方法指南
本文是一份面向机器学习从业者的统计方法指南,系统介绍了统计学在机器学习项目中的关键作用。内容涵盖从基础统计概念如高斯分布、描述性统计,到数据可视化、随机数生成,再到核心的假设检验、重采样技术(如交叉验证和自助法)、估计统计(置信区间与预测区间),以及适用于非正态数据的非参数方法。文章强调实践导向,帮助读者通过Python工具快速掌握并应用统计技术,以提升模型理解、评估与优化能力。原创 2025-09-11 13:07:14 · 4 阅读 · 0 评论