7.22

1. 如果面对如同前文所述的A序列, 转置操作便很有可能无法对其进行转置(因为A并不是矩阵的属性),此时就需要我们借助其他的函数操作进行转置

print(A[np.newaxis,:])
# [[1 1 1]]
import numpy as np
A = np.array([1,1,1])[:,np.newaxis]

np.newaxis,:]这个地方np.newaxis放的位置有关,第二个程序放在[:,]的后面,相当于在原来的后面增加一个维度,所以变为(3,1),而第三个则放在前面,则为(1,3),记得注意啊,放在前面是先逗号,在冒号,而放在后面是先冒号在逗号,不要弄错了哦,同时记得是中括号扩起来,不是小括号哦
## 总结 
np.newaxis的作用就是在原来的数组上增加一个维度。 

其位置决定了是在行/列上增加一个维度。

2.axis参数很好的控制了矩阵的纵向或是横向打印。axis=0表述列,axis=1表述行

3.matplotlib:使用plt.figure定义一个图像窗口. 

4.

numpy.random.rand()

  • rand函数根据给定维度生成[0,1)之间的数据,包含0,不包含1
  • 括号参数为生成随机数的维度
a = np.random.rand(4,2)
print(a)
#[[ 0.12531495  0.21084176]
# [ 0.49285425  0.71383499]
# [ 0.34699335  0.04372341]
# [ 0.15578197  0.43788198]]

numpy.random.randint()

  • 返回随机整数,范围区间为[low,high),包含low,不包含high
  • 参数:low为最小值,high为最大值,size为数组维度大小,dtype为数据类型,默认的数据类型是np.int
  • high没有填写时,默认生成随机数的范围是[0,low)
np.random.randint(1,5) # 返回1个[1,5)时间的随机整数
np.random.randint(-5,5,size=(2,2))



作者:听城
链接:https://www.jianshu.com/p/935e7434e578
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

5.转换数据类型:如      np.astype(np.int)

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值