1.两数之和(过程分析)

//一遍hash表
class Solution {
    public int[] twoSum(int[] nums, int target) {
        Map<Integer, Integer> map = new HashMap<>();
        for (int i = 0; i < nums.length; i++) {
            int complement = target - nums[i];
            if (map.containsKey(complement)) {
                return new int[] { map.get(complement), i };
            }
            map.put(nums[i], i);
        }
        throw new IllegalArgumentException("No two sum solution");
    }
}

题解过程:
[11, 2, 7, 15] target = 9
i = 0, Hashmap为空 => 不存在 => [entry[key=11,value=0]]
i = 1, Hashmap无7  => 不存在 => [entry[key=11,value=0], entry[key=2,value=1]]
i = 2, Hashmap有2  => 存在   => 返回 [1, 2]


[11, 2, 2, 15] target = 4
i = 0, Hashmap为空 => 不存在 => [entry[key=11,value=0]]
i = 1, Hashmap无2  => 不存在 => [entry[key=11,value=0], entry[key=2,value=1]]
i = 2, Hashmap有2  => 存在   => 返回 [1, 2]
时间复杂度 O(n)
空间复杂度 O(n)

//暴力法
class Solution {
    public int[] twoSum(int[] nums, int target) {
        for(int i = 0; i < nums.length; i++){
            for(int j = i + 1; j < nums.length; j++){
                if(nums[i] == target - nums[j]){
                    return new int[]{i, j};
                }
            }
        }
        throw new IllegalArgumentException("No two sum solution");
    }
}

题解过程:
[2, 11, 7, 15] target = 9
i = 0, j = 1 => 2 + 11 != 9
i = 0, j = 2 => 2 + 7  == 9 返回 [0, 1]
时间复杂度 O(n2)
空间复杂度 O(n)

//两遍hash表

class Solution {
    public int[] twoSum(int[] nums, int target) {
        Map<Integer, Integer> map = new HashMap<>();
        for (int i = 0; i < nums.length; i++) {
            map.put(nums[i], i);
        }
        for (int i = 0; i < nums.length; i++) {
            int complement = target - nums[i];
            if (map.containsKey(complement) && map.get(complement) != i) {
                return new int[] { i, map.get(complement) };
            }
        }
        throw new IllegalArgumentException("No two sum solution");
    }
}

题解过程:
[11, 2, 7, 15] target = 9
=> [entry[key=11,value=0],entry[key=2,value=1], entry[key=7,value=2], entry[key=15,value=3]] 存的顺序和Hashcode函数有关
i = 0, complement = -2 => map中不存在-2
i = 1, complement =  7 => map中存在2,且1 != 2 返回 [1, 2]

[11, 2, 2, 15] target = 4
=> [entry[key=11,value=0],entry[key=2,value=1, next] --> entry[key=2,value=2], , entry[key=15,value=3]]
i = 0, complement = -7 => map中不存在-7
i = 1, complement =  2 => map中存在2,且1 = 1 不符合,则 next 得 1 != 2 返回 [1, 2]
时间复杂度 O(n)
空间复杂度 O(n)


HashMap实现原理及源码分析 - dreamcatcher-cx - 博客园  https://www.cnblogs.com/chengxiao/p/6059914.html#t2

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值