凯利公式(Kelly Criterion)是由美国数学家约翰·拉里·凯利(John Larry Kelly)于1956年提出的一种资金管理方法,旨在通过数学计算确定最佳投注比例,以在正期望值的重复行为中实现长期资本增长的最大化。其核心公式为:
f = (bp - q) / b*
其中:
f* 代表每次应投入资金的比例;
b 为赔率(即盈利金额与亏损金额的比值);
p 为胜率(即成功的概率);
q 为败率(即失败概率,q = 1 - p)。
币圈如何基于凯利公式制定策略?
在加密货币领域,凯利公式可应用于仓位管理和风险控制,但需结合市场特性进行调整:
确定正期望场景:
凯利公式仅适用于具有正期望值的交易(即长期收益预期为正)。例如,若某策略胜率为60%(p=0.6),盈亏比为2(b=2),则败率q=0.4,代入公式得最佳仓位比例f*=(2×0.6 - 0.4)/2 = 0.4(即40%仓位)。若计算结果为负,则表明该策略不值得参与。
动态仓位调整:
根据市场波动性动态计算仓位。例如,提到一种基于价格区间的策略:
当前价高于一年内最高价时满仓;
低于一年内最低价时空仓;
其他情况按凯利公式计算比例调仓。
这种策略在币圈高波动环境中可减少极端风险。
分散投资与风险稀释:
币圈资产波动剧烈,需通过分散持仓降低风险。例如,若凯利公式建议单币种仓位为20%,可将总仓位分散至5-10种相关度较低的币种,每币种投入2%-4%资金。此外,多策略组合(如趋势跟踪与均值回归结合)可进一步平滑收益曲线。
修正凯利公式以控制风险:
实际应用中,币圈策略的胜率(p)和盈亏比(b)常不稳定,直接使用凯利公式可能因高仓位导致爆仓风险。因此,可采用分数凯利策略:
半凯利:仓位 = 0.5×f*;
1/3凯利:仓位 = 0.33×f*。
例如,若原公式建议40%仓位,半凯利策略仅投入20%。虽然收益降低,但显著减少回撤。
结合量化模型回测:
和展示了通过Python回测验证凯利公式的效果。在币圈中,可基于历史数据模拟不同仓位比例下的资金曲线,选择风险收益比最优的方案。例如,若某策略在100次交易中60%仓位实现最高收益(如中的685%增长),则可采用该比例。
注意事项与局限性
独立性假设:凯利公式默认每次交易独立,但币圈市场存在强相关性(如比特币与山寨币联动),可能导致风险被低估。
胜率与赔率估算偏差:需通过长期数据统计修正参数,避免主观臆测。
极端波动风险:币圈可能出现“黑天鹅”事件(如交易所暴雷),需设置硬性止损(如总资金2%的亏损上限)。
实例:追涨策略中的凯利公式应用
假设某币种在突破关键阻力位后,有60%概率上涨20%(b=0.2/0.1=2),40%概率下跌10%(q=0.4),则:
f* = (2×0.6 - 0.4)/2 = 0.4 → 40%仓位。
若采用半凯利策略,实际投入20%仓位,剩余资金作为备用以应对突发波动。
综上,凯利公式为币圈提供了一种科学仓位管理框架,但需结合市场特性、分散投资和风险修正策略,才能在高波动环境中实现长期稳定收益。