mapreduce
SunmonDong
这个作者很懒,什么都没留下…
展开
-
Mapreduce Java实现WordCount 小案例
map的源码:package com.sfd.worldcount;import java.io.IOException;import org.apache.commons.lang.StringUtils;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.Text;import org.apache.ha原创 2016-04-05 21:53:14 · 1171 阅读 · 0 评论 -
MR程序的几种提交运行模式
本地模型运行1.在windows的eclipse里面直接运行main方法,就会将job提交给本地执行器localjobrunner执行 ----输入输出数据可以放在本地路径下(c:/wc/srcdata/) ----输入输出数据也可以放在hdfs中(hdfs://sfd:9000/wc/srcdata)2.在linux的eclipse里面直接运行main方法,但是不要添加y转载 2016-04-06 20:21:20 · 1919 阅读 · 0 评论 -
mapreduce(JAVA)实现(大数据)电话号码对应的流量排序(倒序)
仅供参考: 使用自定义类在mapreduce中的传递,详细解释:使用wordcount详解mapreduce使用 实体类源码:package com.sfd.vo;import java.io.DataInput;import java.io.DataOutput;import java.io.IOException;import org.apache.hadoop.io.Writable;原创 2016-04-10 11:33:11 · 765 阅读 · 0 评论 -
从 MapReduce 到 Hive —— 一次迁移过程小记
1、背景介绍早先的工作中,有很多比较复杂的分析工作,当时对hive还不熟悉,但是java比较熟悉,所以在进行处理的时候,优先选择了MR. 但是随着工作的数据内容越来越多,越来越复杂,对应的调整也越来越多,越来越复杂.纯使用MR方式整个流程就比较复杂,如果需要修改某个部分,那首先需要修改代码中的逻辑,然后把代码打包上传到某个可访问路径上(一般就是hdfs),然后在调度平台内执行.如果改动较大的情况,转载 2016-05-16 17:15:15 · 2208 阅读 · 0 评论 -
Hadoop1.X mapreduce原理和缺陷
MapReduce的简介:MapReduce是一个软件框架,客房部件的编写应用程序,一并行的方式在数千商用硬件组成的集群节点中处理TB级的数据,并且提供了可靠性和容错的能力。MapReduce的范式: MapReduce处理模型包括两个独立的步骤: A. 第一步是并行Map阶段,输入数据被分割成离散块以便可以单独处理 B. Shuffle阶段 C. 第二步是Reduce阶段,汇总M原创 2016-07-01 16:17:17 · 2503 阅读 · 0 评论