工作原理
为了实现在k8s上安装Dapr,Dapr需要部署dapr-sidecar-injector
、dapr-operator
、dapr-placement
和dapr-sentry
服务。
dapr-operator: 管理组件(state stores, pub/subs, etc.)
dapr-sidecar-injector: 将 Dapr 注入 annotated pods,并添加环境变量
DAPR_HTTP_PORT
和DAPR_GRPC_PORT
,以使用户定义的应用程序能够轻松地与 Dapr Sidecar通信,而无需硬编码 Dapr 端口值。dapr-placement: 将 actor 实例映射到 pods。
dapr-sentry: 管理服务之间的mTLS并作为证书颁发机构。
2.安装K8s集群
通常使用以下方法本地安装的K8S集群
k8s-for-docker-desktop
kubeadm
我本地已经安装好了这两种,这次使用kubeadm 1.20版本演示dapr
3.将Frontend和Backend build成docker Image
vs中分别右击Frontend和Backend,添加Docker支持,即可生成对应的Dockerfile,修改暴露端口
#See https://aka.ms/containerfastmode to understand how Visual Studio uses this Dockerfile to build your images for faster debugging.
FROM mcr.microsoft.com/dotnet/aspnet:5.0 AS base
WORKDIR /app
EXPOSE 5001
FROM mcr.microsoft.com/dotnet/sdk:5.0 AS build
WORKDIR /src
COPY ["FrontEnd/FrontEnd.csproj", "FrontEnd/"]
RUN dotnet restore "FrontEnd/FrontEnd.csproj"
COPY . .
WORKDIR "/src/FrontEnd"
RUN dotnet build "FrontEnd.csproj" -c Release -o /app/build
FROM build AS publish
RUN dotnet publish "FrontEnd.csproj" -c Release -o /app/publish
FROM base AS final
WORKDIR /app
COPY --from=publish /app/publish .
ENTRYPOINT ["dotnet", "FrontEnd.dll"]
#See https://aka.ms/containerfastmode to understand how Visual Studio uses this Dockerfile to build your images for faster debugging.
FROM mcr.microsoft.com/dotnet/aspnet:5.0 AS base
WORKDIR /app
EXPOSE 5000
FROM mcr.microsoft.com/dotnet/sdk:5.0 AS build
WORKDIR /src
COPY ["BackEnd/BackEnd.csproj", "BackEnd/"]
RUN dotnet restore "BackEnd/BackEnd.csproj"
COPY . .
WORKDIR "/src/BackEnd"
RUN dotnet build "BackEnd.csproj" -c Release -o /app/build
FROM build AS publish
RUN dotnet publish "BackEnd.csproj" -c Release -o /app/publish
FROM base AS final
WORKDIR /app
COPY --from=publish /app/publish .
ENTRYPOINT ["dotnet", "BackEnd.dll"]
通过以下命令Build Image
docker build -t frontend -f ./FrontEnd/Dockerfile .
docker build -t backend -f ./BackEnd/Dockerfile .
4.将Docker Image推送到仓库
我使用阿里云私有仓库来上传镜像,创建frontend和backend两个库
按照以下提示步骤将frontend和backend Image上传到指定库
5.让k8s使用私有仓库拉取镜像
k8s主节点登录阿里云私库
docker login --username=xxx registry.cn-beijing.aliyuncs.com
docker登录之后,会把密钥存到一个配置文件,通过下面命令拿到base64编码信息
cat ~/.docker/config.json | base64
新建ali-docker-repo.yaml,.dockerconfigjson就是上一步得到的base64
[root@k8s-master dapr-demo]# cat ali-docker-repo.yaml
apiVersion: v1
kind: Secret
metadata:
name: ali-key
type: kubernetes.io/dockerconfigjson
data:
.dockerconfigjson: ewoJImF1dGhzIjogewoJCSJyZWdpc3RyeS5jbi1iZWlqaW5nLmFsaXl1bmNzLmNvbSI6IHs..............
apply secret
[root@k8s-master dapr-demo]# kubectl apply -f ali-docker-repo.yaml
6.安装Dapr CLI
下面命令将DaprCLI安装到 /usr/local/bin
wget -q https://raw.githubusercontent.com/dapr/cli/master/install/install.sh -O - | /bin/bash
7.验证Dapr CLI
dapr
8.初始化Dapr
首先,请确保你的机器已经安装了 Helm 3 。
然后,添加 Helm 库并更新
helm repo add dapr https://dapr.github.io/helm-charts/
helm repo update
# See which chart versions are available
helm search repo dapr --devel --versions
将 Dapr 图表安装在你的集群的 dapr-system
命名空间中。
helm upgrade --install dapr dapr/dapr \
--version=1.2 \
--namespace dapr-system \
--create-namespace \
--wait
验证安装
[root@k8s-master dapr-demo]# kubectl get pods --namespace dapr-system
NAME READY STATUS RESTARTS AGE
dapr-dashboard-58b4647996-828n8 1/1 Running 2 9d
dapr-operator-85bdd7d89d-5d8dw 1/1 Running 19 9d
dapr-placement-server-0 1/1 Running 3 9d
dapr-sentry-76bfc5f7c7-vn2qt 1/1 Running 2 9d
dapr-sidecar-injector-786645f444-dmzm7 1/1 Running 2 9d
9.配置状态存储和订阅发布组件
我们仍然通过helm安装redis,因为redis是statefulset,因此需要先把redis依赖的storageclass和pv创建好
新建redis-storage-class.yaml
[root@k8s-master dapr-demo]# cat redis-storage-class.yaml
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: local-storage-redis
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: WaitForFirstConsumer
apply storageclass
[root@k8s-master dapr-demo]# kubectl apply -f redis-storage-class.yaml
由于我们即将安装的redis,使用默认的storageclass,我们需要把我们刚刚新建的storageclass置为默认
kubectl patch storageclass local-storage-redis -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'
因为我们即将安装的redis集群有四个节点,我们需新建四个pv,新建文件redis-pv.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
name: local-pv-redis
spec:
capacity:
storage: 8Gi
# volumeMode field requires BlockVolume Alpha feature gate to be enabled.
volumeMode: Filesystem
accessModes:
- ReadWriteOnce
storageClassName: local-storage-redis
persistentVolumeReclaimPolicy: Retain
local:
path: /local-storage/redis
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- k8s-node1
---
apiVersion: v1
kind: PersistentVolume
metadata:
name: local-pv-redis2
spec:
capacity:
storage: 8Gi
# volumeMode field requires BlockVolume Alpha feature gate to be enabled.
volumeMode: Filesystem
accessModes:
- ReadWriteOnce
storageClassName: local-storage-redis
persistentVolumeReclaimPolicy: Retain
local:
path: /local-storage/redis
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- k8s-node1
---
apiVersion: v1
kind: PersistentVolume
metadata:
name: local-pv-redis3
spec:
capacity:
storage: 8Gi
# volumeMode field requires BlockVolume Alpha feature gate to be enabled.
volumeMode: Filesystem
accessModes:
- ReadWriteOnce
storageClassName: local-storage-redis
persistentVolumeReclaimPolicy: Retain
local:
path: /local-storage/redis
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- k8s-node1
---
apiVersion: v1
kind: PersistentVolume
metadata:
name: local-pv-redis4
spec:
capacity:
storage: 8Gi
# volumeMode field requires BlockVolume Alpha feature gate to be enabled.
volumeMode: Filesystem
accessModes:
- ReadWriteOnce
storageClassName: local-storage-redis
persistentVolumeReclaimPolicy: Retain
local:
path: /local-storage/redis
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- k8s-node1
因为我们指定了四个pv调度在k8s-node1上,所以需要去node1上新建挂载目录/local-storage/redis
mkdir /local-storage
cd /local-storage
mkdir /redis
apply pv
kubectl apply -f redis-pv.yaml
安装redis到集群
helm repo add bitnami https://charts.bitnami.com/bitnami
helm repo update
helm install redis bitnami/redis
查看redis pod
[root@k8s-master dapr-demo]# kubectl get pod
redis-master-0 1/1 Running 0 141m
redis-replicas-0 1/1 Running 0 141m
redis-replicas-1 1/1 Running 0 141m
redis-replicas-2 1/1 Running 0 140m
创建storestate组件,新建redis-state.yaml
[root@k8s-master dapr-demo]# cat redis-state.yaml
apiVersion: dapr.io/v1alpha1
kind: Component
metadata:
name: statestore
namespace: default
spec:
type: state.redis
version: v1
metadata:
- name: redisHost
value: redis-master.default.svc.cluster.local:6379
- name: redisPassword
secretKeyRef:
name: redis
key: redis-password
- name: actorStateStore
value: "true"
新建pubsub组件
[root@k8s-master dapr-demo]# cat redis-pubsub.yaml
apiVersion: dapr.io/v1alpha1
kind: Component
metadata:
name: pubsub
namespace: default
spec:
type: pubsub.redis
version: v1
metadata:
- name: redisHost
value: redis-master.default.svc.cluster.local:6379
- name: redisPassword
secretKeyRef:
name: redis
key: redis-password
apply statestore和pubsub
kubectl apply -f redis-state.yaml
kubectl apply -f redis-pubsub.yaml
验证
[root@k8s-master dapr-demo]# kubectl get component.dapr.io
NAME AGE
pubsub 135m
statestore 135m
10.分别为frontend和backend新建deployment
在 Kubernetes 集群中部署和运行启用 Dapr 的应用程序非常简单,只需向 deployment 方案添加一些annotations
[root@k8s-master dapr-demo]# cat frontend.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: frontend
labels:
app: frontend
spec:
replicas: 1
selector:
matchLabels:
app: frontend
template:
metadata:
labels:
app: frontend
annotations:
dapr.io/enabled: "true"
dapr.io/app-id: "frontend"
dapr.io/app-port: "5001"
spec:
imagePullSecrets:
- name: ali-key
containers:
- name: frontend
image: registry.cn-beijing.aliyuncs.com/chester-dapr/frontend:latest
ports:
- containerPort: 5001
imagePullPolicy: Always
[root@k8s-master dapr-demo]# cat backend.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: backend
labels:
app: backend
spec:
replicas: 1
selector:
matchLabels:
app: backend
template:
metadata:
labels:
app: backend
annotations:
dapr.io/enabled: "true"
dapr.io/app-id: "backend"
dapr.io/app-port: "5000"
spec:
imagePullSecrets:
- name: ali-key
containers:
- name: backend
image: registry.cn-beijing.aliyuncs.com/chester-dapr/backend:latest
ports:
- containerPort: 5000
imagePullPolicy: Always
分别apply backend和frontend
[root@k8s-master dapr-demo]# kubectl apply -f frontend.yaml
[root@k8s-master dapr-demo]# kubectl apply -f backend.yaml
查看pod
[root@k8s-master dapr-demo]# kubectl get pod
NAME READY STATUS RESTARTS AGE
backend-7fff74f544-f6xms 2/2 Running 0 134m
frontend-5c479c9948-tmz5k 2/2 Running 0 99m
redis-master-0 1/1 Running 0 147m
redis-replicas-0 1/1 Running 0 147m
redis-replicas-1 1/1 Running 0 146m
redis-replicas-2 1/1 Running 0 146m
11.验证
为frontend创建service
[root@k8s-master dapr-demo]# cat frontend-service.yaml
apiVersion: v1
kind: Service
metadata:
name: frontend-svc
spec:
type: NodePort
selector:
app: frontend
ports:
- port: 5001
targetPort: 5001
nodePort: 31111
采用nodeport方式暴露31111端口,apply service
kubectl apply -f frontend-service.yaml
访问http://192.168.43.150:31111/Dapr,其中192.168.43.150是宿主机ip,结果显示访问成功,k8s部署dapr成功
最后:整个教程的源码
https://github.com/cysnet/dapr-aspnetcore-demo
相关文章: