如何在业务层实现响应缓存

本文介绍了如何在ASP.NET Core中利用MediatR在业务层实现响应缓存,以提高程序性能。通过创建一个缓存管道行为,结合ICacheableQuery接口和IDistributedCache,实现了对特定查询的缓存。示例代码展示了如何在WeatherForecastController中应用缓存,使得后续请求能快速获取响应,从而减少延迟。
摘要由CSDN通过智能技术生成

前言

上次,我们介绍了应该在业务层实现管道模式

响应缓存是ASP.NET Core中很重要的功能,它可以存储响应,并提供来自缓存的响应,以便提高程序性能。

响应缓存通常是通过Middleware实现的:

public static class ResponseCachingExtensions
{
    /// <summary>
    /// Adds the <see cref="ResponseCachingMiddleware"/> for caching HTTP responses.
    /// </summary>
    /// <param name="app">The <see cref="IApplicationBuilder"/>.</param>
    public static IApplicationBuilder UseResponseCaching(this IApplicationBuilder app)
    {
        if (app == null)
        {
            throw new ArgumentNullException(nameof(app));
        }

        return app.UseMiddleware<ResponseCachingMiddleware>();
    }
}

现在,我们改成由业务层实现响应缓存。

实现

1.引用Nuget包

新建WebAPI项目,引用需要的Nuget包:

Install-Package MediatR
Install-Package MediatR.Extensions.Microsoft.DependencyInjection
Install-Package Newtonsoft.Json

2.新增接口

新增ICacheableQuery接口,表示需要缓存:

public interface ICacheableQuery
{
    TimeSpan? SlidingExpiration { get; }
}
  • SlidingExpiration:缓存过期时间

3.新增缓存管道

利用MediatR的IPipelineBehavior功能,实现缓存管道:

public class CachingBehavior<TRequest, TResponse> : IPipelineBehavior<TRequest, TResponse> where TRequest : ICacheableQuery
{
    private readonly IDistributedCache _cache;

    public CachingBehavior(IDistributedCache cache)
    {
        _cache = cache;
    }
    public async Task<TResponse> Handle(TRequest request, CancellationToken cancellationToken, RequestHandlerDelegate<TResponse> next)
    {
        TResponse response;
        if (request.SlidingExpiration == null)
        {
            return await next();
        }
        var key =GetCacheKey(request);
        var cachedResponse = await _cache.GetAsync(key, cancellationToken);
        if (cachedResponse != null)
        {
            response = JsonConvert.DeserializeObject<TResponse>(Encoding.UTF8.GetString(cachedResponse));
        }
        else
        {
            response = await next();
            var options = new DistributedCacheEntryOptions { SlidingExpiration = request.SlidingExpiration };
            var serializedData = Encoding.UTF8.GetBytes(JsonConvert.SerializeObject(response));
            await _cache.SetAsync(key, serializedData, options, cancellationToken);
            return response;
        }
        return response;
    }
}

以TRequest作为缓存Key,如果缓存存在,则反序列化得到缓存的响应,否则执行请求,缓存响应。

4.使用缓存管道

修改WeatherForecastController,使用Mediator,设置缓存时间为5秒:

public class WeatherForecastController : ControllerBase
{
    private readonly IMediator _mediator;

    public WeatherForecastController(IMediator mediator)
    {
        this._mediator = mediator;
    }


    [HttpGet]
    public async Task<IEnumerable<WeatherForecast>> Get()
    {
        return await this._mediator.Send(new GetWeatherForecastQuery());              
    }
}

public class GetWeatherForecastQuery : IRequest<IEnumerable<WeatherForecast>>, ICacheableQuery
{
    public TimeSpan? SlidingExpiration { get; set; } = TimeSpan.FromSeconds(5);
}

internal class GetWeatherForecastQueryHandler : IRequestHandler<GetWeatherForecastQuery, IEnumerable<WeatherForecast>>
{
    public async Task<IEnumerable<WeatherForecast>> Handle(GetWeatherForecastQuery request, CancellationToken cancellationToken)
    {
        await Task.Delay(1000);
        var rng = new Random();
        return Enumerable.Range(1, 1).Select(index => new WeatherForecast
        { 
            TemperatureC = rng.Next(-20, 55),
            Summary = Summaries[rng.Next(Summaries.Length)]
        })
        .ToArray();
    }
}

为了体现效果明显,代码里故意加了等待时间。

运行程序,可以看到,第一次请求花了1000多ms,而后的请求都很快,说明使用了缓存:

结论

在本文中,我们学会了使用MediatR实现响应缓存。

如果你觉得这篇文章对你有所启发,请关注我的个人公众号”My IO“

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值