【实测有点东西】使用IMA知识库投喂影刀RPA开发文档后让DeepSeek帮忙写代码

理想很丰满,现实也还行,实测了一下腾讯的IMA的知识库功能,投喂影刀RPA开发文档后,让它帮我写点代码,初看错误率不算大,当然要稳定运行,肯定还要作一些调整,这足以走向提升效率的路上。

经过思考后,真的开始给我写代码了

from xbot import web, appfrom xbot import sleepimport xbotdef main(args):    # 1.读取Excel中的关键词(假设数据在A列)    keywords = app.databook.get_range(1, 'A', 0, 'A')  # end_row=0表示读取到最后        # 创建结果存储列表    all_results = []        # 2.遍历每个关键词    for keyword_row in keywords:        keyword = keyword_row[0]  # 取A列单元格内容                try:            # 3.打开浏览器访问百度            browser = web.create("https://www.baidu.com", "chrome")                        # 4.输入关键词并搜索            search_input = browser.find('//input[@id="kw"]', by='xpath')  # 百度搜索框[2](@ref)            search_input.input(keyword)            search_btn = browser.find('//input[@id="su"]', by='xpath')     # 百度一下按钮            search_btn.click()            sleep(2)  # 等待搜索结果加载[1](@ref)                        current_page = 1            while current_page <= 20:  # 控制翻页20次                # 5.提取本页搜索结果(示例:获取所有结果标题)                results = browser.find_all('//h3[@class="t"]', by='xpath')  # 标题元素                page_data = []                                for result in results:                    try:                        title = result.get_text().strip()                        page_data.append([keyword, current_page, title])                    except:                        continue                                # 存储到总结果                all_results.extend(page_data)                                # 6.翻页操作                try:                    next_btn = browser.find('//a[@class="n"]', by='xpath')  # 下一页按钮[1](@ref)                    next_btn.click()                    sleep(3)  # 等待新页面加载[1](@ref)                    current_page += 1                except:                    break  # 翻页失败则终止当前关键词                            # 关闭浏览器            browser.close()                    except Exception as e:            print(f"处理关键词【{keyword}】时出错:{str(e)}")            continue        # 7.将结果写入Excel(写入新的Sheet)    if len(all_results) > 0:        app.databook.set_range(            row_num=1,             col_name='A',             values=all_results,            sheet_name='搜索结果'        )if __name__ == '__main__':    main(None)

当然AI也给我贴心指导下注意事项

最后,为什么这么波折去用影刀编码版,设计器版不是很好用吗?

1、对于会写代码的人来说,设计器只是一时爽,不能一直爽,指令长了,各种修改参数很繁琐,虽然很多步骤打开设计器指令界面才能修改上。

2、调试也麻烦,很多参数在设计器界面看不到。

3、AI永远不能给我们做设计器的工作,但编码版就很擅长。

4、要想免费用好影刀RPA,编码版必须得上,最长30条指令的免费分享,使用设计器方式开发应用,想分享自己做的应用给其他人使用,几乎不可行。

有想使用本篇影刀RPA知识来玩玩AI写影刀代码的,可加我微信 19062897 过来体验一下。

### 实现 DeepSeek 创建个人知识库 为了在本地环境中成功创建并运行基于 DeepSeek 的个人知识库,需遵循一系列配置与操作流程。 #### 安装依赖环境 首先,确保 Python 版本兼容性至关重要。推荐使用 Conda 虚拟环境来管理项目所需的软件包版本。具体命令如下所示: ```bash conda create -n deepseek python=3.10 conda activate deepseek ``` 这一步骤能够建立一个名为 `deepseek` 的新虚拟环境,并指定 Python 3.10 作为解释器版本[^2]。 #### 配置 DeepSeek 和 Dify 平台集成 完成上述准备工作之后,下一步就是将 DeepSeek 整合至支持私有化部署的 Dify 开发平台之中。这种做法不仅有助于保护敏感资料的安全性和隐私权,同时也允许开发者利用更加强大且灵活的功能集去定制专属的人工智能应用程序[^1]。 #### 添加本地知识库的具体方法 对于希望进一步扩展应用能力的企业或个人而言,在已有的基础上加入自定义的知识源是一项非常有价值的工作。通常情况下,此过程涉及以下几个方面: - **准备结构化的数据文件**:可以是以 CSV 或 JSON 格式的文档集合; - **编适配接口程序**:用于解析外部输入的数据格式并与内部存储机制相匹配; - **执行索引更新动作**:每当新增加一批条目时都需要重新计算其对应的检索向量; 请注意,实际编码细节会依据所选技术栈的不同而有所差异。然而,总体思路保持一致——即始终围绕着提高系统的智能化水平以及增强用户体验展开设计思考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值