「全天候智能代理」-您在安睡时,WhatsApp MCP仍在高效运转

image.png

点击“数字共生”

 

立即关注我们

本文使用 ClinePRO 自动翻译。

原文作者:Manpreet Singh

原文链接:

https://medium.com/everyday-ai/whatsapp-mcp-agents-that-work-while-you-sleep-3b5b803e38c4

大家好,

最近我们讨论了很多关于各种MCP服务器的话题。

昨天,我偶然发现了一篇关于WhatsApp MCP服务器的资料,这引起了我的兴趣。

于是我深入研究了这个主题,并撰写了这篇文章,向大家介绍如何实现它以及一些可以尝试的想法。

让我们开始吧!!

想象一下明天早上醒来。

你的手机震动。不是闹钟-而是你的AI团队在报到。

  • "早上好!您的网站流量一夜之间增长了15%。已回复三个客户咨询。您飞往新德里的航班已确认,我找到了会议地点附近的五个潜在Airbnb房源。您想预订哪一个?"

听起来像科幻小说?但其实不是。

这就是今天通过WhatsApp MCP Agents可以实现的功能-你自己的AI梦之队,通过全球最流行的消息应用直接向你汇报。

我将向你展示如何构建它,即使你从未写过一行代码。

为什么WhatsApp + AI = 魔法?

你可能在想这有什么大不了的!想象一下传统的AI助手就像那些彬彬有礼却寸步不离的管家。

他们被困在一个地方(应用或网站),你需要时得去找他们。

但如果你的管家能跟随你到任何地方,预见你的需求,与其他专家协调,只在需要你关注时才轻拍你的肩膀呢?这就是WhatsApp MCP Agents革命-让AI来找你,而不是你追着AI跑。

数据说明了为什么WhatsApp是完美渠道:

  • 5000万+企业已使用WhatsApp(熟悉的领域)

  • 30亿+全球活跃用户(你的客户已经在使用)

  • 98%的打开率 vs 邮件的21%(你的消息确实被看到)

  • 消息通常在15分钟内被阅读(近乎实时响应)

  • 60%点击率 vs 邮件的3%(人们会采取行动)

多代理系统的力量

为了简单理解,我将用音乐和管弦乐队类比说明。所以别着急,跟着我的音乐类比,你会理解得更好。我看到大多数人对AI的体验就像让一个音乐家演奏所有乐器-可以工作但很有限。

我们要构建的更像是一个管弦乐队,专业演奏者在指挥下和谐工作。

考虑这个真实场景:

    Rex经营一家小型电商。以前每天早晨要花两小时检查库存、回答客户问题、分析广告效果和安排社交媒体帖子。设置WhatsApp MCP Agent团队后,他现在每天早晨收到包含所有关键信息的简报。库存代理在库存低时提醒他。客户服务代理处理常规问题,只升级复杂问题。分析代理监控广告效果并提出优化建议。内容代理根据表现好的内容草拟和安排社交帖子。

Rex现在开始一天只需5分钟与AI团队聊天-每天节省近2小时,业务增长速度快了30%。

理论说得够多了。让我们进入正题看看如何实现。我知道你等这一刻很久了... ...

让我们构建你的AI梦之队版本。

构建你的AI管弦乐队(分步指南)

第1步:设置WhatsApp通信桥梁

首先,我们需要在AI代理和WhatsApp之间建立连接。

想象这是在建造指挥台-所有通信流动的中心点。

git clone https://github.com/MervinPraison/WhatsApp-MCPcd WhatsApp-MCP/whatsapp-bridge

现在你需要安装Go(想象这是我们音乐厅的声学架构):

# For Macbrew install go# For Windows, download from golang.org

然后启动WhatsApp通信:

go run main.go

会出现一个二维码,用WhatsApp扫描连接你的手机。保持这个终端运行;这是你始终在线的通信渠道。

第2步:组装乐队的乐器

每个管弦乐队都需要乐器。

我们需要安装支持AI代理的软件包:

pip install praisonaiagentspip install mcppip install gradio  # For creating a beautiful UI later

设置API密钥:

export OPENAI_API_KEY=your_api_key_here

第3步:创建第一个乐手(单独的WhatsApp代理)

让我们从单个表演者开始-一个能给你发消息的WhatsApp代理:

from praisonaiagents import Agent, MCP# Create your first AI team memberwhatsapp_agent = Agent(    instructions="You are a helpful WhatsApp assistant that communicates clearly and concisely.",    llm="gpt-4-mini",    mcp="mcp_whatsapp_send_message /path/to/WhatsApp-MCP/whatsapp-bridge/mcp_server.py")# Give it its first taskwhatsapp_agent.start("Hello! I'm your new AI assistant. I'm ready to help you stay updated and manage tasks. What would you like me to help with today?")

运行这个:

python app.py

检查WhatsApp-你刚刚收到了来自第一个AI团队成员的消息!

就像听到新乐器的第一个音符。

第4步:构建你的合奏(多代理团队)

现在让我们从独奏扩展到小型合奏。

创建一个能搜索旅行住宿并向你报告的团队:

from praisonaiagents import Agent, PraisonAIAgents, MCP# Create a specialized research agentairbnb_agent = Agent(    instructions="You are an expert at finding the perfect accommodations. Search thoroughly and consider location, price, amenities, and reviews.",    llm="gpt-4-mini",    mcp="mcp0_airbnb_search")# Create your communication agentwhatsapp_agent = Agent(    instructions="You are a concise communicator who delivers information clearly. Summarize findings in bullet points with the most important details first.",    llm="gpt-4-mini",    mcp="mcp_whatsapp_send_message /path/to/WhatsApp-MCP/whatsapp-bridge/mcp_server.py")# Bring the team togetheragents = PraisonAIAgents(agents=[airbnb_agent, whatsapp_agent])# Give them a complex taskagents.start("Find me a cozy apartment in Paris near the Eiffel Tower for next weekend (April 12-14) for two adults. Budget is around €200 per night. I prefer places with good reviews and a balcony if possible.")

运行这个,神奇的事情发生了。

Airbnb代理搜索选项,然后将结果传递给WhatsApp代理,后者格式化并发送给你-无需你进一步输入。

就像看着音乐家完美和谐地演奏。

第5步:使用Ollama本地运行(你的内部乐队)

想不依赖外部API在本地运行一切?

可以使用Ollama-想象这是把管弦乐队带到内部而不是雇佣外部表演者:

ollama pull llama3.2

然后修改代码:

from praisonaiagents import Agent, PraisonAIAgents, MCP# Create a locally-powered WhatsApp agentwhatsapp_agent = Agent(    instructions="""    You are a WhatsApp communication specialist.    Craft messages that are clear, engaging, and actionable.    Always include the most important information first.    Format longer messages with bullet points for readability.    """,    llm="ollama/llama3.2",    mcp="mcp_whatsapp_send_message /path/to/WhatsApp-MCP/whatsapp-bridge/mcp_server.py")# Start the agentwhatsapp_agent.start("Send me a daily summary of my calendar events, top news headlines, and weather forecast every morning at 7 AM.")

第6步:用Groq增强(你的高性能管弦乐队)

为了更快响应代理-就像从社区管弦乐队升级到爱乐乐团-可以使用Groq:

export GROQ_API_KEY=your_groq_api_key_here

然后更新代码:

from praisonaiagents import Agent, PraisonAIAgents, MCP# Create a high-performance WhatsApp agentwhatsapp_agent = Agent(    instructions="You are an executive assistant who prioritizes efficiency and clarity. Deliver information in a structured, actionable format.",    llm="groq/llama3-70b-8192",    mcp="mcp_whatsapp_send_message /path/to/WhatsApp-MCP/whatsapp-bridge/mcp_server.py")# Start the agent with a complex taskwhatsapp_agent.start("Monitor my email for messages from clients, summarize their requests, and suggest potential responses. For urgent matters, alert me immediately.")

第7步:创建你的音乐厅(漂亮的UI)

让我们创建一个优雅界面来指挥AI管弦乐队:

import gradio as grfrom praisonaiagents import Agent, PraisonAIAgents, MCP# Create specialized agentsairbnb_agent = Agent(    instructions="You are a travel accommodation expert with an eye for quality and value.",    llm="gpt-4-mini",    mcp="mcp0_airbnb_search")whatsapp_agent = Agent(    instructions="You are a personal concierge who delivers information with clarity and a touch of personality.",    llm="gpt-4-mini",    mcp="mcp_whatsapp_send_message /path/to/WhatsApp-MCP/whatsapp-bridge/mcp_server.py")# Function to orchestrate the agentsdef search_and_notify(query):    # Create a temporary ensemble for this specific performance    agents = PraisonAIAgents(agents=[airbnb_agent, whatsapp_agent])    result = agents.start(query)    return f"Your AI team is on it! Check WhatsApp for updates on: {query}"# Create a beautiful interfacedemo = gr.Interface(    fn=search_and_notify,    inputs=gr.Textbox(        label="What can my AI team help you with today?",        placeholder="Find me a beachfront Airbnb in Miami for next month..."    ),    outputs=gr.Textbox(label="Status"),    title="Your Personal AI Team",    description="Delegate tasks to your AI team and receive updates via WhatsApp",    theme="soft")# Open the concert hall doorsdemo.launch()

运行这个UI:

python app.py

现在你有了一个漂亮的网页界面,可以输入请求,AI团队将通过WhatsApp工作并报告。

这里是详细流程图:


真实世界的AI管弦乐队组合

以上示例只是开始。

以下是你可以用AI团队创建的"乐曲"(示例):

早晨简报

morning_briefing_agent = Agent(    instructions="You are a morning briefing specialist. Gather key information and present it in a clear, prioritized format.",    llm="gpt-4-mini",    mcp="mcp_web_search"  # For news and weather)calendar_agent = Agent(    instructions="You are a calendar management expert. Review upcoming events and highlight what needs attention.",    llm="gpt-4-mini",    mcp="mcp_google_calendar"  # Connect to your calendar)email_agent = Agent(    instructions="You are an email triage specialist. Identify important messages that need attention.",    llm="gpt-4-mini",    mcp="mcp_gmail"  # Connect to your email)whatsapp_agent = Agent(    instructions="You are a personal executive assistant. Compile information from various sources into a concise, actionable briefing.",    llm="gpt-4-mini",    mcp="mcp_whatsapp_send_message /path/to/WhatsApp-MCP/whatsapp-bridge/mcp_server.py")morning_team = PraisonAIAgents(agents=[morning_briefing_agent, calendar_agent, email_agent, whatsapp_agent])# Schedule this to run every morning at 7 AM# (You'd need to set up a scheduler like cron for this)morning_team.start("Prepare a morning briefing with today's weather, top news headlines, calendar events, and any urgent emails.")

社交媒体协奏曲

analytics_agent = Agent(    instructions="You are a social media analytics expert. Identify trends, engagement patterns, and growth opportunities.",    llm="gpt-4-mini",    mcp="mcp_google_analytics"  # Connect to your analytics)content_agent = Agent(    instructions="You are a content strategy specialist. Suggest content ideas based on what's performing well and current trends.",    llm="gpt-4-mini",    mcp="mcp_web_search"  # For trending topics)scheduler_agent = Agent(    instructions="You are a social media scheduling expert. Determine optimal posting times based on audience activity.",    llm="gpt-4-mini",    mcp="mcp_buffer"  # Connect to your social scheduler)whatsapp_agent = Agent(    instructions="You are a social media manager's right hand. Compile insights and suggestions into actionable recommendations.",    llm="gpt-4-mini",    mcp="mcp_whatsapp_send_message /path/to/WhatsApp-MCP/whatsapp-bridge/mcp_server.py")social_team = PraisonAIAgents(agents=[analytics_agent, content_agent, scheduler_agent, whatsapp_agent])# Run this weeklysocial_team.start("Analyze our social media performance this week, suggest content ideas for next week, and recommend optimal posting times.")

从新手到指挥大师

就像学习指挥管弦乐队,构建AI团队是一个旅程:
  • 从单一乐器开始(一个发送WhatsApp更新的代理)

  • 添加互补乐器(特定任务的专门代理)

  • 创建小型合奏(协同工作的相关任务代理)

  • 谱写完整交响乐(多代理团队的复杂工作流)

这种方法的妙处在于你可以简单开始,随着熟练度提高而扩展。即使一个配置良好的代理每周也能节省数小时。

未来是协作的(人类+AI团队)

WhatsApp MCP Agents最强大的不是自动化-而是它实现的新型协作。

传统AI工具就像有一个聪明但被动的助手,只在被询问时才说话。

WhatsApp MCP Agents就像有积极主动的团队成员:

  • 在你专注于高价值工作时在后台工作

  • 只在需要人类判断时提醒你

  • 无需不断检查就能更新进度

  • 从你的反馈中学习并改进

这就像是“事必躬亲”和“拥有自主团队”的天壤之别-他们清楚何时该请你出马。

今天就开始(你的第一个30分钟)

千里之行始于足下。

来吧!!

以下是你前30分钟可以完成的:

  • 0-5分钟: 克隆WhatsApp-MCP仓库

  • 5-10分钟: 设置WhatsApp桥接并扫描二维码

  • 10-15分钟: 安装所需软件包

  • 15-20分钟: 创建第一个WhatsApp代理

  • 20-25分钟: 发送第一条自动消息

  • 25-30分钟: 扩展到两代理团队

即使这个简单设置也能让你体验AI代理通过WhatsApp随时随地联系你的能力。

总结一下,我们已经从单独AI助手时代进入了AI管弦乐队时代-专业代理团队在你指挥下和谐工作。

无论你是希望节省时间的小企业主、探索AI前沿的开发者,还是单纯希望摆脱频繁查看应用困扰的普通人,WhatsApp MCP Agents代表了人机协作的新范式。

问题不再是"AI能帮助我吗?"而是"我想要多少AI团队成员,首先让他们做什么?"你的AI管弦乐队等待你的指挥。你将谱写什么交响曲?

未来的工作不仅是AI-更是人类和AI完美和谐地共同工作。

— END —

与数字智能体一同进化

长按二维码关注“数字共生”

这里有人人都能读懂的AI

微信号:szgs_AI

二维码.jpeg

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值