监督学习之回归方式训练(Regression)和评估模型

在上一节中,我们介绍了 机器学习的分类,其中 回归 (Regression) 是一种用于 预测数值数据 的方法。本节介绍 回归模型的训练与评估


训练回归模型

1.1 数据拆分

在训练回归模型时,我们通常将数据拆分为:

  • **训练数据 (Training Data)**:用于训练模型,学习 温度和销量的关系

  • **验证数据 (Validation Data)**:用于测试模型,评估预测效果

以下是完整的数据集:

温度 (x)

冰淇淋销量 (y)

51

1

52

0

67

14

65

14

70

23

69

20

72

23

75

26

73

22

81

30

78

26

83

36

训练数据集 (用于训练模型):

温度 (x)

冰淇淋销量 (y)

51

1

65

14

69

20

72

23

75

26

81

30

验证数据集 (用于测试模型):

温度 (x)

冰淇淋销量 (y)

52

0

67

14

70

23

73

22

78

26

83

36


1.2 训练过程

我们使用 线性回归 (Linear Regression) ,找到一条 直线公式 来表达 温度和销量的关系

公式解释

  • 当温度为 50°F,销量为 0 🍦

  • 温度每升高 5°F,销量增加 5 份 ✅

  • 例如:明天温度 77°F,预计销量:预计卖出 27 份冰淇淋

训练数据散点图 (拟合出的回归直线)


评估回归模型

2.1 预测 vs. 真实数据

使用 验证数据 来测试模型:

温度 (x)

实际销量 (y)

预测销量 (ŷ)

52°F

0

2

67°F

14

17

70°F

23

20

73°F

22

23

78°F

26

28

83°F

36

33

可以看到,预测值不完全等于实际值,存在 误差 。

实际销量 vs. 预测销量对比图


计算误差 (Model Error Metrics)

为了衡量模型的好坏,我们计算几个常用的误差指标:

3.1 平均绝对误差 (MAE, Mean Absolute Error)

计算公式

示例

  • 误差值:2、3、3、1、2、3

  • 计算平均误差:


3.2 均方误差 (MSE, Mean Squared Error)

计算公式

示例

  • 误差平方值:4、9、9、1、4、9

  • 计算平均误差:


3.3 均方根误差 (RMSE, Root Mean Squared Error)

计算公式

示例

  • 计算   🍦(与销量单位相同)


3.4 决定系数 (R², R-Squared)

计算公式

解释

  • 取值范围 0 ~ 1,越接近 1 说明模型预测越准确 📈

  • 示例中,冰淇淋回归模型的 R² = 0.95,表示 95% 变量可解释 ✅


如何优化回归模型?

优化方法增加更多特征:如 天气、假日、促销 等因素 📊
尝试不同算法:如 多项式回归 (Polynomial Regression)决策树回归 (Decision Tree Regression) 🌳
调整模型超参数:改变学习率、正则化参数,优化模型表现 🎛


总结

回归模型的目标:用 数学公式预测数值数据,例如 温度对销量的影响

训练过程拆分数据(训练集 & 验证集)
训练模型(使用 线性回归 拟合数据)
测试模型(对比预测值 & 真实值)
优化模型(增加特征 & 选择合适算法)
不断迭代,找到最优模型

进一步学习机器学习回归

  • Scikit-learn 线性回归教程

  • TensorFlow 回归模型

  • Azure 机器学习 - 回归分析

📢 欢迎 Star ⭐ 本仓库,获取更多 AI 资源!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值