每个AI工程师都应了解的A2A、MCP与ACP核心要义

image.png

点击“数字共生”

 

立即关注我们

本文使用 ClinePRO 自动翻译。

原文作者:Edwin Lisowski

原文链接:

https://medium.com/@elisowski/what-every-ai-engineer-should-know-about-a2a-mcp-acp-8335a210a742

MCP(模型上下文协议)是什么?

它是由Anthropic推出的模型上下文协议(Model Context Protocol,简称MCP),为大型语言模型(LLMs)定义了一套标准化实时上下文接口,用于提供结构化输入数据。

核心功能

1.上下文数据注入

MCP允许将外部资源(如文件、数据库记录或API响应)直接注入到提示词或工作内存中。所有数据均通过标准化接口传输,使LLM能够保持轻量化与整洁性。

2.函数路由与调用

该协议支持模型动态调用工具。开发者可注册诸如searchCustomerData(查询客户数据)或generateReport(生成报告)等能力,LLM即可按需调用。这相当于为AI配备了一个可插拔工具箱,而无需将工具硬编码到模型内部。

3.提示词编排

MCP能智能组装关键上下文,而非将所有细节塞入提示词。这种模块化实时构建方式,实现了:

  • 更精准的上下文选择

  • 更少的token消耗

  • 更优质的输出结果

实现特性

  • 基于HTTP(S)协议运行,使用JSON格式的能力描述符

  • 模型无关设计-任何具备兼容运行时的LLM均可接入符合MCP标准的服务端

  • 兼容企业级认证标准(如OAuth2、mTLS)及API网关

工程应用场景

1. LLM与企业内部API集成

通过MCP实现对企业结构化业务数据的安全访问(只读或交互式),避免直接暴露原始API端点

2.企业级智能体赋能

为自主智能体动态注入运行时上下文,支持从Salesforce、SAP或内部知识库等工具实时获取信息

3.动态提示词构建

根据用户会话状态、系统运行状态或任务管道逻辑,智能定制提示词内容

ACP(智能体通信协议)是什么?

MCP代表模型上下文协议(Model Context Protocol)。它让Claude这样的AI能突破自

智能体通信协议(Agent Communication Protocol,简称ACP)是由BeeAI与IBM联合提出的开放标准,旨在为同一本地或边缘环境中运行的AI智能体提供结构化通信、服务发现与协同调度能力。

与面向云端的A2A协议或MCP等上下文路由协议不同,ACP专为本地优先的实时智能体编排设计,具有以下核心特性:

  • 极低网络开销

  • 支持共享运行时的深度集成

协议设计与架构

ACP定义了一个去中心化智能体运行环境,其核心架构如下:

1.智能体自描述体系
每个智能体通过本地广播/发现层,主动宣告其身份标识能力集实时状态

2.事件驱动通信机制
智能体间通过事件消息交互,通常基于本地总线或进程间通信(IPC)系统实现

3.可选运行时控制器

    • 智能体行为编排

    • 运行遥测数据聚合

    • 执行策略强制实施

    ACP智能体通常以轻量化无状态服务或容器的形式运行,共享同一通信基座(communication substrate)。

    实现特性

    1.低延迟环境专优设计

    适用于本地化智能体编排、机器人控制、离线边缘AI等场景

    多协议适配支持

    2.可通过以下方式实现:

    • gRPC协议

    • ZeroMQ消息队列

    • 自定义运行时总线

    3.本地主权保障

    • 无需依赖云端服务

    • 免除外部服务注册

    4.智能任务路由

    支持通过能力类型标注与语义描述符实现自动化任务分配

    工程应用场景

    1.边缘设备多智能体协同

    支持无人机集群、物联网节点组或机器人舰队等场景下的分布式智能体编排

    2.本地优先的LLM系统

    协调模型调用、传感器输入与动作执行的端到端流程

    3.去中心化自主运行环境

    实现无需云端中枢的智能体自主协同

    简言之,ACP为模块化AI系统提供了一个运行时本地协议层-优先考虑低延迟协调、高弹性和可组合性。它天然适合那些云优先协议难以适用的隐私敏感型、自主化或边缘优先的部署场景。

    A2A(智能体间通信协议)是什么?

    由Google推出的智能体间通信协议(Agent-to-Agent Protocol,简称A2A)是一套跨平台规范,旨在实现AI智能体在异构系统间的通信、协作与任务委派。

    与ACP的"本地优先"定位或MCP的工具集成层不同,A2A专注于横向互操作性-通过标准化不同厂商/运行环境的智能体间的能力交换与工作流协调机制,实现开放网络下的无缝协作。

    协议概述

    A2A采用基于HTTP的通信模型,将每个智能体视为可互操作的服务单元。各智能体会公开一份机器可读的"智能体卡片"(Agent Card)-采用JSON格式描述其身份标识、能力集、通信端点及认证要求等元数据。

    基于该机制,智能体可实现:

    • 程序化相互发现

    • 任务与角色协商

    • 消息/数据/流式更新的交互

    A2A原则上不限定传输层协议,但当前规范以HTTPS+JSON-RPC 2.0作为核心交互机制。

    核心组件

    • 智能体卡片(Agent Cards):描述智能体能力、端点、支持的消息类型、认证方法和运行时元数据的JSON文档。

    • A2A客户端/服务器接口:每个智能体既可以作为客户端(任务发起者),也可以作为服务器(任务执行者),或者同时兼具两种角色,从而实现动态任务路由和协商。

    • 消息与数据交换:支持包含上下文的多部分任务、通过SSE实现的流式输出,以及文件或知识块等持久化数据。

    • 用户体验协商:智能体能够根据下游智能体的能力,自适应地调整消息格式、内容粒度和可视化呈现方式。

    安全架构

    • 基于OAuth 2.0和API密钥的授权机制

    • 能力限定端点-智能体仅暴露声明交互所需的函数接口

    • 支持"不透明"运行模式-隐藏内部逻辑同时公开可调用服务

    实现特性

    • 原生Web设计:基于HTTP、JSON-RPC及标准Web安全协议构建

    • 模型无关性:兼容任何实现该协议的智能体系统(LLM或其他类型)

    • 支持任务流式传输与轻量级多轮协作

    工程应用场景

    1.跨平台智能体生态系统:实现不同团队或厂商开发的智能体间安全互操作

    2.云原生AI环境中的分布式智能体编排(如Vertex AI、LangChain、HuggingFace Agents等平台)

    3.多智能体协作框架:例如跨多个系统(CRM、HR、IT等智能体)的企业级AI工作流

    协议对比一览表

    特性

    MCP

    ACP

    A2A

    主要焦点

    为大语言模型注入上下文

    代理的本地协调

    跨平台的代理通信

    架构

    客户端-服务器(主机/服务器模式)

    去中心化,本地运行时

    基于HTTP的客户端/服务器,含代理卡片

    范围

    垂直集成(工具→模型)

    本地优先的代理运行时

    水平集成(代理↔代理)

    发现机制

    服务器上的工具注册表

    本地广播/运行时注册

    通过HTTP(S)的代理卡片

    传输协议

    HTTP(S), JSON

    IPC, ZeroMQ, gRPC(灵活)

    JSON-RPC 2.0 over HTTPS

    安全模型

    应用层认证、OAuth2、范围化API

    运行时沙箱、私有网络安全

    OAuth2、范围化端点暴露

    最佳适用场景

    需要外部数据/工具的LLM应用

    边缘AI、嵌入式系统、离线代理

    跨平台的多代理工作流

    示例用例

    将LLM连接到内部API

    设备上多个小型代理的协调

    分布式企业代理协作

    互补还是竞争?

    A2A与MCP的关系

    A2A和MCP并非相互竞争-它们解决的是智能体AI难题中完全不同的环节,实际上二者能完美互补。

    可以这样理解:MCP是让AI智能体接入现实世界的协议。它为智能体提供文件、API、数据库等结构化上下文的访问能力,无论是获取实时销售数据还是生成定制报告,MCP负责处理与工具和数据的连接。A2A则是智能体间的协作层。它提供统一语言和规则体系,使不同厂商开发、运行在不同平台上的智能体能够相互发现、任务委派和协作协商。

    简而言之:MCP连接AI与工具,A2A连接AI与AI

    二者共同构成了构建智能协作系统的模块化基础架构。

    ACP的定位

    ACP则采用了完全不同的技术路径,它专注于本地优先的智能体协同-无需云端支持。与基于HTTP和网络发现机制的A2A不同,ACP让智能体在共享运行时环境中直接发现并通信。

    这种设计特别适合以下场景:

    • 带宽受限或需要低延迟(如机器人控制、设备端助手)

    • 注重隐私,需全程离线运行的场景

    • 无网络环境(如工厂车间、边缘节点等)

    ACP并非要与A2A竞争,而是填补了另一个细分需求。但在某些严格管控的环境中,ACP可能完全替代A2A-因为它摒弃了云原生协议的开销,直接在本地高效完成任务。

    融合还是分裂?

    随着这些协议被更多团队采用,未来可能呈现几种发展态势:

    1.理想情况:走向融合。设想一个统一的智能体平台-A2A负责智能体间通信,MCP管理工具和数据接入,而ACP式运行时则专攻边缘/离线场景。所有组件无缝协作,开发者无需关心底层协议的具体分工。

    2.最坏情况:走向分裂。不同厂商推行各自的A2A或MCP变种,最终陷入混乱-就像早期Web服务时代,没有大量胶水代码就无法互联互通。

    3.折中方案:开源工具和中间件可能成为救星。这些项目将作为智能体与协议间的适配层,既通过统一API为开发者屏蔽差异,又能在底层根据智能体运行环境自动转换协议。

    简言之:一切才刚刚开始。但我们当前构建和采用这些标准的方式,将决定AI智能体最终形成有机统一的生态,还是沦为割裂的孤岛。

    — END —

    与数字智能体一同进化

    长按二维码关注“数字共生”

    这里有人人都能读懂的AI

    微信号:szgs_AI

    二维码.jpeg

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值