62.不同路径
文档讲解:代码随想录
视频讲解: 动态规划中如何初始化很重要!| LeetCode:62.不同路径
状态
- dp数组
二维dp数组,dp[i][j]表示(i,j)这个格子的路径数 - 初始化
对于第一行和第一列的所有格子路径数都是1。
for()
{
dp[0][i] = 1
dp[j][0] = 1;
}
- 递推公式
(i,j)这个格子可以由(i-1,j)或者(i,j-1)这两个格子达到,所以
dp[i][j] = dp[i-1][j] + dp[i][j-1];
- 遍历方式
从左上角开始到右下角 - 打印dp数组
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> dp(m,vector<int> (n));
//初始化对于第一列或者第一行,只有一种路径
for(int i =0;i<n;i++)
{
dp[0][i] = 1;
}
for(int i = 0;i<m;i++)
{
dp[i][0] = 1;
}
//递推公式 一个格子只能通过其上方格子或者左面格子移动到达
for(int i=1;i<m;i++)
{
for(int j = 1;j<n;j++)
{
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
};
63.不同路径II
文档讲解:代码随想录
视频讲解: 动态规划,这次遇到障碍了| LeetCode:63. 不同路径 II
状态
- dp数组
dp[i][j]表示(i,j)位置的路径数 - 递推公式
如果当前位置(i,j)没有障碍物,那么dp[i][j] = dp[i-1][j]+dp[i][j-1],如果是障碍物那么dp[i][j] = 0; - 初始化
同样对于第一行和第一列,但如果有障碍物,那么障碍物及其之后的格子路径都为0 - 遍历顺序
仍然从左上角到右下角 - 打印dp数组
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
vector<vector<int>> dp(m,vector<int>(n));
//初始化
for(int i = 0;i<m;i++)
{
if(obstacleGrid[i][0] == 1)
{
for(int j = i;j<m;j++)
{
dp[j][0] = 0;
}
break;
}
dp[i][0] = 1;
}
for(int i = 0;i<n;i++)
{
if(obstacleGrid[0][i] == 1)
{
for(int j = i;j<n;j++)
{
dp[0][j] = 0;
}
break;
}
dp[0][i] = 1;
}
//遍历
for(int i = 1;i<m;i++)
{
for(int j = 1;j<n;j++)
{
if(obstacleGrid[i][j] == 1)
{
dp[i][j] == 0;
}
else
{
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
}
return dp[m-1][n-1];
}
};