代码随想录Day39 | 62.不同路径 63. 不同路径 II

文章讲述了在LeetCode中的两个问题,62.不同路径和63.不同路径II,涉及动态规划方法,强调了初始化策略和处理障碍物对状态数组dp的影响。通过计算到达每个网格的路径数,最后返回特定位置的唯一路径数量。
摘要由CSDN通过智能技术生成

代码随想录Day39 | 62.不同路径 63. 不同路径 II

62.不同路径

文档讲解:代码随想录
视频讲解: 动态规划中如何初始化很重要!| LeetCode:62.不同路径
状态

  1. dp数组
    二维dp数组,dp[i][j]表示(i,j)这个格子的路径数
  2. 初始化
    对于第一行和第一列的所有格子路径数都是1。
for()
{
	dp[0][i] = 1
	dp[j][0] = 1;
}
  1. 递推公式
    (i,j)这个格子可以由(i-1,j)或者(i,j-1)这两个格子达到,所以
dp[i][j] = dp[i-1][j] + dp[i][j-1];
  1. 遍历方式
    从左上角开始到右下角
  2. 打印dp数组
class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> dp(m,vector<int> (n));
        //初始化对于第一列或者第一行,只有一种路径
        for(int i =0;i<n;i++)
        {
            dp[0][i] = 1;
        }
        for(int i = 0;i<m;i++)
        {
            dp[i][0] = 1;
        }
        //递推公式 一个格子只能通过其上方格子或者左面格子移动到达
        for(int i=1;i<m;i++)
        {
            for(int j = 1;j<n;j++)
            {
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
};

63.不同路径II

文档讲解:代码随想录
视频讲解: 动态规划,这次遇到障碍了| LeetCode:63. 不同路径 II
状态

  1. dp数组
    dp[i][j]表示(i,j)位置的路径数
  2. 递推公式
    如果当前位置(i,j)没有障碍物,那么dp[i][j] = dp[i-1][j]+dp[i][j-1],如果是障碍物那么dp[i][j] = 0;
  3. 初始化
    同样对于第一行和第一列,但如果有障碍物,那么障碍物及其之后的格子路径都为0
  4. 遍历顺序
    仍然从左上角到右下角
  5. 打印dp数组
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        vector<vector<int>> dp(m,vector<int>(n));
        //初始化
        for(int i = 0;i<m;i++)
        {
            if(obstacleGrid[i][0] == 1)
            {
                for(int j = i;j<m;j++)
                {
                    dp[j][0] = 0;
                }
                break;
            }
            dp[i][0] = 1;
        }
        for(int i = 0;i<n;i++)
        {
            if(obstacleGrid[0][i] == 1)
            {
                for(int j = i;j<n;j++)
                {
                    dp[0][j] = 0;
                }
                break;
            }
            dp[0][i] = 1;
        }
        //遍历
        for(int i = 1;i<m;i++)
        {
            for(int j = 1;j<n;j++)
            {
                if(obstacleGrid[i][j] == 1)
                {
                    dp[i][j] == 0;
                }
                else
                {
                    dp[i][j] = dp[i-1][j] + dp[i][j-1];
                }
            }
        }
        return dp[m-1][n-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值