题目描述 Description
农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场。当然,他需要你的帮助。 约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其他农场。为了使花费最少,他想铺设最短的光纤去连接所有的农场。 你将得到一份各农场之间连接费用的列表,你必须找出能连接所有农场并所用光纤最短的方案。 每两个农场间的距离不会超过100000
输入描述 Input Description
第一行: 农场的个数,N(3<=N<=100)。
第二行..结尾: 接下来的行包含了一个N*N的矩阵,表示每个农场之间的距离。理论上,他们是N行,每行由N个用空格分隔的数组成,实际上,他们每行限制在80个字符以内,因此,某些行会紧接着另一些行。当然,对角线将会是0,因为线路从第i个农场到它本身的距离在本题中没有意义。
输出描述 Output Description
只有一个输出,是连接到每个农场的光纤的最小长度和。
样例输入 Sample Input
4
0 4 9 21
4 0 8 17
9 8 0 16
21 17 16 0
样例输出 Sample Output
28
分析:
简单的MST,用并查集操作实现的kruskal算法
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<stdlib.h>
#define MAX_E 100000
#define MAX_V 100000
const int inf =1<<30;
using namespace std;
struct edge{
int fm,to,dist;
}e[MAX_E];
int fa[MAX_V],n,m;
bool cmp(struct edge a,struct edge b){
return a.dist <b.dist;
}
int getfa(int x){
if(fa[x]==x) return fa[x];
else return fa[x]=getfa(fa[x]);
}
int same(int x,int y){
return getfa(x)==getfa(y);
}
void merge(int x,int y){
int fax=getfa(x),fay=getfa(y);
fa[fax]=fay;
}
int main(){
scanf("%d",&n); //n:number of Vextex,m:number of Edge
m=n*n;
int top=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
e[top].fm=i,e[top].to=j,scanf("%d",&e[top].dist);
top++;
}
/*
printf("top=%d\n",top);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
printf("%d%c",e[i*n+j].dist,j==4?'\n':' ');
*/
//sort by ascending order
sort(e+1,e+1+top,cmp) ;
//init fa
for(int i=1;i<=n;i++)
fa[i]=i;
int rst=n,ans=0; // rst: 集合数目
for(int i=1;i<=m && rst>1;i++){
int x=e[i].fm,y=e[i].to;
if(same(x,y)) // 在一个集合中
continue;
else{
merge(x,y);
rst--;
ans+=e[i].dist;
}
}
printf("%d\n",ans);
return 0;
}