HDU 3861 The King’s Problem 强联通缩点 + 最小路径覆盖

题意:给你一个有向图,有一些规则:
1:对于两个点u v,如果存在u到v的路径并且存在v到u的路径,则他们属于同一个阵营
2:对于两个点u v,如果存在u到v的路径或者存在v到u的路径,则他们可以属于同一个阵营
3:每个点只能属于一个阵营
问你这个有向图最少能分为几个阵营

思路:首先强联通缩点,对于第二条规则,其实也就是说找一条路径使得其覆盖尽量多的点,用二分图解决即可。

这题不能用邻接矩阵,会MLE。。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;

#define REP( i, a, b ) for( int i = a; i < b; i++ )
#define CLR( a , x ) memset( a , x , sizeof a )

const int maxn = 5000 + 10;
const int maxe = 100000 + 10;

struct Edge{
    int v, next;
    Edge (int v = 0, int next = 0) : v(v), next(next) {}
};

struct SCC{
    int Head[maxn], cntE;
    int dfn[maxn], low[maxn], dfs_clock;
    int scc[maxn], scc_cnt;
    int Stack[maxn], top;
    bool ins[maxn];
    Edge edge[maxe];
    void init(){
        top = 0;
        cntE = 0;
        scc_cnt = 0;
        dfs_clock = 0;
        CLR(ins, 0);
        CLR(dfn, 0);
        CLR(Head, -1);
    }
    void add(int u, int v){
        edge[cntE] = Edge(v, Head[u]);
        Head[u] = cntE++;
    }
    void Tarjan(int u){
        dfn[u] = low[u] = ++dfs_clock;
        Stack[top++] = u;
        ins[u] = 1;
        for (int i = Head[u] ; ~i ; i = edge[i].next){
            int v = edge[i].v;
            if (!dfn[v]){
                Tarjan (v) ;
                low[u] = min(low[u], low[v]) ;
            }
            else if (ins[v])
                low[u] = min (low[u], dfn[v]) ;
        }
        if (low[u] == dfn[u]){
            ++scc_cnt;
            while ( 1 ){
                int v = Stack[--top];
                ins[v] = 0;
                scc[v] = scc_cnt;
                if (v == u)
                    break;
            }
        }
    }
    void find_scc(int n){
        REP(i, 0, n) if(!dfn[i]) Tarjan (i) ;
    }
}scc;

int X, Y;
int linker[maxn];
bool vis[maxn];

Edge e[maxe];
int cnte, H[maxn];

void Init(){
    memset(H, -1, sizeof(H));
    cnte = 0;
}

void Add(int u, int v){
    e[cnte] = Edge(v, H[u]);
    H[u] = cnte++;
}

bool dfs(int u){
    for(int i = H[u]; ~i; i = e[i].next)if(!vis[e[i].v]){
        vis[e[i].v] = true;
        if(linker[e[i].v] == -1 || dfs(linker[e[i].v])){
            linker[e[i].v] = u;
            return true;
        }
    }
    return false;
}

int hungary(){
      int ans = 0;
      memset(linker, -1, sizeof(linker));
      for(int u = 0; u < X; u++){
            memset(vis, false, sizeof(vis));
            if(dfs(u)) ans++;
      }
      return ans;
}

void solve(){
    int n, m;
    scanf("%d%d", &n, &m);
    scc.init();
    for(int i = 0; i < m; i++){
        int u, v;
        scanf("%d%d", &u, &v);
        --u; --v;
        scc.add(u, v);
    }
    scc.find_scc(n);
    Init();
    X = Y = scc.scc_cnt;
    for(int i = 0; i < n; i++)
    for(int j = scc.Head[i]; ~j; j = scc.edge[j].next){
        int u = i, v = scc.edge[j].v;
        if(scc.scc[u] != scc.scc[v]){
            Add(scc.scc[u] - 1, scc.scc[v] - 1);
        }
    }
    printf("%d\n", scc.scc_cnt - hungary());
}

int main()
{
    int T;
    scanf("%d", &T);
    while(T--) solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值