题意:给你一个有向图,有一些规则:
1:对于两个点u v,如果存在u到v的路径并且存在v到u的路径,则他们属于同一个阵营
2:对于两个点u v,如果存在u到v的路径或者存在v到u的路径,则他们可以属于同一个阵营
3:每个点只能属于一个阵营
问你这个有向图最少能分为几个阵营
思路:首先强联通缩点,对于第二条规则,其实也就是说找一条路径使得其覆盖尽量多的点,用二分图解决即可。
这题不能用邻接矩阵,会MLE。。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
#define REP( i, a, b ) for( int i = a; i < b; i++ )
#define CLR( a , x ) memset( a , x , sizeof a )
const int maxn = 5000 + 10;
const int maxe = 100000 + 10;
struct Edge{
int v, next;
Edge (int v = 0, int next = 0) : v(v), next(next) {}
};
struct SCC{
int Head[maxn], cntE;
int dfn[maxn], low[maxn], dfs_clock;
int scc[maxn], scc_cnt;
int Stack[maxn], top;
bool ins[maxn];
Edge edge[maxe];
void init(){
top = 0;
cntE = 0;
scc_cnt = 0;
dfs_clock = 0;
CLR(ins, 0);
CLR(dfn, 0);
CLR(Head, -1);
}
void add(int u, int v){
edge[cntE] = Edge(v, Head[u]);
Head[u] = cntE++;
}
void Tarjan(int u){
dfn[u] = low[u] = ++dfs_clock;
Stack[top++] = u;
ins[u] = 1;
for (int i = Head[u] ; ~i ; i = edge[i].next){
int v = edge[i].v;
if (!dfn[v]){
Tarjan (v) ;
low[u] = min(low[u], low[v]) ;
}
else if (ins[v])
low[u] = min (low[u], dfn[v]) ;
}
if (low[u] == dfn[u]){
++scc_cnt;
while ( 1 ){
int v = Stack[--top];
ins[v] = 0;
scc[v] = scc_cnt;
if (v == u)
break;
}
}
}
void find_scc(int n){
REP(i, 0, n) if(!dfn[i]) Tarjan (i) ;
}
}scc;
int X, Y;
int linker[maxn];
bool vis[maxn];
Edge e[maxe];
int cnte, H[maxn];
void Init(){
memset(H, -1, sizeof(H));
cnte = 0;
}
void Add(int u, int v){
e[cnte] = Edge(v, H[u]);
H[u] = cnte++;
}
bool dfs(int u){
for(int i = H[u]; ~i; i = e[i].next)if(!vis[e[i].v]){
vis[e[i].v] = true;
if(linker[e[i].v] == -1 || dfs(linker[e[i].v])){
linker[e[i].v] = u;
return true;
}
}
return false;
}
int hungary(){
int ans = 0;
memset(linker, -1, sizeof(linker));
for(int u = 0; u < X; u++){
memset(vis, false, sizeof(vis));
if(dfs(u)) ans++;
}
return ans;
}
void solve(){
int n, m;
scanf("%d%d", &n, &m);
scc.init();
for(int i = 0; i < m; i++){
int u, v;
scanf("%d%d", &u, &v);
--u; --v;
scc.add(u, v);
}
scc.find_scc(n);
Init();
X = Y = scc.scc_cnt;
for(int i = 0; i < n; i++)
for(int j = scc.Head[i]; ~j; j = scc.edge[j].next){
int u = i, v = scc.edge[j].v;
if(scc.scc[u] != scc.scc[v]){
Add(scc.scc[u] - 1, scc.scc[v] - 1);
}
}
printf("%d\n", scc.scc_cnt - hungary());
}
int main()
{
int T;
scanf("%d", &T);
while(T--) solve();
return 0;
}