剑指offer 矩形覆盖

题目描述:
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

思路:
2*1的情况只有一种
2*2的情况,当第一块横着放的时候第二块也必须横着放,当第一块竖着放的时候,会发现剩余部分又是2*1的情况
2*3的情况,当第一块横着放,剩余2*1,当第一块竖着放,剩余2*2的情况
因此,f[n] = f[n-1] + f[n-2]

#include <cstdio>
using namespace std;

int main()
{
    long long f[100];
    f[1] = f[0] = 1;
    for(int i = 2; i <= 70; i++)
        f[i] = f[i-1] + f[i-2];
    int n;
    while(scanf("%d", &n) != EOF){
        printf("%lld\n", f[n]);
    }
    return 0;
}

写了发回溯,果断超时。。。

#include <cstdio>
#include <cstring>
using namespace std;

const int maxn = 100;

int vis[2][maxn];
int n;
int ans;

void dfs(int x, int y){
    if(x == 2){
        ans++;
        return;
    }
    if(vis[x][y]){
        dfs(x, y + 1);
        return;
    }
    if(y == n){
        dfs(x + 1, 0);
        return;
    }
    if(x == 0){//第一行
        if(y != n-1 && !vis[x][y+1]){//横着放
            vis[x][y] = vis[x][y+1] = 1;
            dfs(x, y+1);
            vis[x][y] = vis[x][y+1] = 0;
        }
        if(!vis[x+1][y]){//竖着放
            vis[x][y] = vis[x+1][y] = 1;
            dfs(x, y+1);
            vis[x][y] = vis[x+1][y] = 0;
        }
    }
    else{//第二行
        if(y != n-1 && !vis[x][y+1]){//横着放
            vis[x][y] = vis[x][y+1] = 1;
            dfs(x, y+1);
            vis[x][y] = vis[x][y+1] = 0;
        }
    }
}

void solve()
{
    memset(vis, 0, sizeof(vis));
    ans = 0;
    dfs(0, 0);
    printf("%d\n", ans);
}

int main()
{
    while(scanf("%d", &n) != EOF)
        solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值