快速幂,快速幂取余

普通求幂

一般的求幂的方法就是平常使用的pow函数,最简单的实现方法就是累乘,可以得到如下的代码:

#include <stdio.h>
int Pow(int a, int b)
{
    int ans = 1;
    for(int i = 1; i <= b; i++)
    {
        ans *= a;
    }
    return ans;
}
int main()
{
    int a, b;
    scanf("%d%d", &a, &b);
    //求a的b次幂
    printf("%d\n", Pow(a, b));
}

可以看到,这种方法的时间复杂度是O(n)。为了降低时间复杂度,我们可以使用快速幂算法,将时间复杂度降低到O(logn),n是幂。

快速幂

快速幂顾名思义就是快速求幂,假设我们求a^b。将b拆分成二进制,所以二进制第i位的位权为2 ^ (i - 1)。
在这里插入图片描述
怎么算呢,通过二进制的权值来求解。运用位运算,取b二进制的每一位,碰到0,就累乘;碰到1,经累乘的值乘到答案。代码实现如下:

#include <stdio.h>
int Pow(int a, int b)
{
    int ans = 1;
    int base = a;
    while(b)
    {
        if(b & 1)
        {
            ans *= base;
        }
        base *= base;
        b >>= 1;
    }
    return ans;
}
int main()
{
    int a, b;
    scanf("%d%d", &a, &b);
    printf("%d\n", Pow(a, b));
}

二进制是从右往左运算的,不断的让base累乘就是对ans做出贡献。

快速幂取模

快速幂取模就是在快速幂上的一点点延伸。
(a ^ b) % c == ((a % c) * (b % c) % c;
快速幂取模同快速幂是一个道理
(a ^ b) % c == (a * a * a…) % c == ((a % c) * (a % c) *(a % c ) …) % c == (a % c) ^ b % c;
代码实现如下:

#include <stdio.h>
int Pow(int a, int b, int c)
{
    int ans = 1;
    int base = a % c;
    while(b)
    {
        if(b & 1)
        {
            ans = (ans * base) % c;
        }
        base = (base * base) % c;
        b >>= 1;
    }
    return ans;
}
int main()
{
    int a, b, c;
    scanf("%d%d%d", &a, &b, &c);
    printf("%d\n", Pow(a, b, c));
}
发布了1 篇原创文章 · 获赞 0 · 访问量 8
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览