歌曲最后的人

歌词

最后是我一个人 走过这片海

看着谁 在对岸留下一句对白

听见爱或不爱 心都已不在

回头再也看不见有你的那片海

是谁在许愿瓶里写满了悲哀

是我捡起了悲哀 换来了伤害

也许是我不该等你 是你不该回来

原本浪漫的邂逅 变成了无奈

我们真的不会彼此拥抱

转身再离开

只会冷冷的静静的不说话

停在那儿发呆

我有多爱你 你有多爱我

其实我们 都说不出来

我们再也不像从前那样

舍不得伤害

而是 说出了最狠最痛的话

然后 say goodbye

你忘记了 承诺

我抛弃了 最爱

原来我们都是

爱着爱着就 分开

最后是我一个人 走过这片海

看着谁 在对岸留下一句对白

听见爱或不爱 心都已不在

回头再也看不见有你的那片海

是谁在许愿瓶里写满了悲哀

是我捡起了悲哀 换来了伤害

也许是我不该等你 是你不该回来

原本浪漫的邂逅 变成了无奈

我们真的不会彼此拥抱

转身再离开

只会冷冷的静静的不说话

停在那儿发呆

我有多爱你 你有多爱我

其实我们 都说不出来

我们再也不像从前那样

舍不得伤害

而是 说出了最狠最痛的话

然后 say goodbye

你忘记了 承诺

我抛弃了 最爱

原来我们都是

爱着爱着就 分开

马晓静.好想你呀.

### 创建基于歌曲自动生成物演唱视频的应用 #### 1. 需求分析 为了构建一个能够根据输入的音频文件自动生成对应的物演唱视频应用,需考虑多个技术模块之间的协作。这不仅涉及到音乐处理领域中的音高提取、节奏识别等功能,还需要借助计算机视觉方面的动作捕捉以及图像合成等手段。 #### 2. 技术栈选择 对于此类项目而言,Python 是较为理想的选择之一,因为它拥有丰富的第三方库支持,特别是在机器学习与多媒体处理方面表现尤为突出。具体来说: - **音频处理**:可以利用 `librosa` 库来进行声音特征提取,比如获取旋律线、节拍位置等信息[^4]。 - **动画生成**:可采用深度学习模型如 Wav2Lip 或 Talking Face Generation 来驱动虚拟角色嘴唇同步发声效果,并通过 Deepfake 类型的技术让其表情更加自然逼真[^5]。 - **视频编辑**:使用 OpenCV 和 moviepy 进行最终输出视频片段拼接等工作[^6]。 #### 3. 实现步骤概述 虽然这里不建议使用诸如“首先”这样的引导词,但在描述整体架构时还是有必要按照逻辑顺序排列各部分功能实现要点: ##### 数据准备阶段 收集并整理大量带有声标注的数据集用于训练AI算法;同时准备好目标风格的脸模板素材作为后续渲染的基础。 ##### 特征抽取环节 针对每一段待处理的歌声样本执行预处理操作(去除背景噪音),随后运用专门设计好的工具包解析出关键参数,例如语调变化趋势图谱、发音部位指示器等等。 ##### 动作映射过程 建立从语音属性到面部肌肉活动模式之间的一一对应关系数据库,在实际运行过程中实时查询匹配最接近当前帧所需呈现的状态组合。 ##### 合成展示成果 最后一步就是将上述所得各项要素整合起来形成连贯流畅的画面序列,期间可能还会涉及特效添加、场景切换等多种后期制作技巧以增强观赏体验感。 ```python import librosa from wav2lip import generate_lipsync_video from talking_face_generation import create_talking_face_animation def auto_generate_singing_video(audio_file_path, output_video_path): # Load and preprocess the audio file y, sr = librosa.load(audio_file_path) # Extract features from the song (e.g., pitch contour) pitches, magnitudes = librosa.core.piptrack(y=y, sr=sr) # Generate lip-sync video based on extracted features lipsync_result = generate_lipsync_video(pitches=pitch_contour) # Create a realistic animated face that sings along with the music final_video = create_talking_face_animation(lipsync_result) # Save the generated video to disk final_video.save(output_video_path) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Arenaschi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值