Tensorflow 跨设备通信

TensorFlow 使用 Send 和 Recv 操作实现跨设备通信,当图在不同设备间分割时自动添加。Send op 立即返回,而 Recv op 注册回调以在张量可用时产生输出并解除阻塞后续计算。数据传输通过 DMA 例程在相同进程的设备间进行,远程传输则由 GrpcRemoteRendezvous 类使用 gRPC 处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考 Tensorflow Cross Device Communication

In TensorFlow, cross-device communication is achieved using the Rendezvous interface, which has multiple different implementations, depending on the deployment. The comment on that interface describes the general idea:

在 TensorFlow 中,跨设备通信使用Rendezvous接口实现,该接口具有多个不同的实现,具体取决于不同的部署。 该接口的注释描述了大概的思路:

rendezvous.h

// A Rendezvous is an abstraction for passing a Tensor
// from a producer to a consumer, where the consumer may safely
// request the Tensor before or after it has been produced.  A
// producer never blocks when using a Rendezvous.  A consumer has the
// choice of making a blocking call or providing a callback: in either
// case, the consumer receives the Tensor as soon as it is available.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值