数据结构上机测试4.1:二叉树的遍历与应用1
题目描述
输入二叉树的先序遍历序列和中序遍历序列,输出该二叉树的后序遍历序列。
输入
第一行输入二叉树的先序遍历序列;
第二行输入二叉树的中序遍历序列。
第二行输入二叉树的中序遍历序列。
输出
输出该二叉树的后序遍历序列。
示例输入
ABDCEF BDAECF
示例输出
DBEFCA
#include <bits/stdc++.h>
using namespace std;
typedef struct node
{
char data;
struct node *l,*r;
} tree;
tree *creat(char *pre,char *in,int len)
/*中序遍历中根节点的左边全都是左子树的中序,
右边全是右子树中序。然而每个子树的先序序列的第一个节点是
子树的根,而且向后移动中序查找得到的左子树节点数便可分开
得到左右子树。因此可以用递归分而治之*/
{
tree *head; //创立根节点
if(len<=0)
{
return NULL; //节点为零时,表示数据完全进入树中
}
head=(tree *)malloc(sizeof(tree));
char *p;
head->data=*pre; //先序的第一个节点指定是当前子树的根
for(p=in; p!=NULL; p++)
if(*p==*pre) break;
int lon=p-in; //左子树节点的个数
head->l=creat(pre+1,in,lon); //分而治之创建左子树
head->r=creat(pre+lon+1,p+1,len-lon-1); //分而治之创建右子树
return head;
}
void last(tree * root)
{
if(root)
{
last(root->l);
last(root->r);
printf("%c",root->data);
}
}
int main()
{
char s0[1000],s1[1000];
scanf("%s",s0);
scanf("%s",s1);
char *in,*pre;
pre=s0;
in=s1;
int len=strlen(s0); //节点数
tree *root=creat(pre,in,len); //从两个字符串中找到树
last (root); //后序遍历
puts("");
return 0;
}