7-1 最大子列和问题 (20 point(s))
给定K个整数组成的序列{ N
1
, N
2
, …, N
K
},“连续子列”被定义为{ N
i
, N
i+1
, …, N
j
},其中 1≤i≤j≤K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。
本题旨在测试各种不同的算法在各种数据情况下的表现。各组测试数据特点如下:
数据1:与样例等价,测试基本正确性;
数据2:102个随机整数;
数据3:103个随机整数;
数据4:104个随机整数;
数据5:105个随机整数;
输入格式:
输入第1行给出正整数K (≤100000);第2行给出K个整数,其间以空格分隔。
输出格式:
在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。
输入样例:
6
-2 11 -4 13 -5 -2
输出样例:
20
Author
DS课程组
Organization
浙江大学
Code Size Limit
16 KB
Time Limit
50000 ms
Memory Limit
64 MB
#include<stdio.h>
int main()
{
int k;
scanf("%d",&k);
int numb[k];
int i;
for(i=0;i<k;i++)
scanf("%d",&numb[i]);
int j;
int max_sum=0,cur_sum=0;
/*在线处理算法*/
for(j=0;j<k;j++){
cur_sum+=numb[j];
if(cur_sum>max_sum){
max_sum=cur_sum;
}
else if(cur_sum<0){
cur_sum=0;
}
}
printf("%d",max_sum);
return 0;
}