题目描述:
树是一个无向图,其中任何两个顶点只通过一条路径连接。 换句话说,一个任何没有简单环路的连通图都是一棵树。
给你一棵包含 n 个节点的数,标记为 0 到 n - 1 。给定数字 n 和一个有 n - 1 条无向边的 edges 列表(每一个边都是一对标签),其中 edges[i] = [ai, bi] 表示树中节点 ai 和 bi 之间存在一条无向边。
可选择树中任何一个节点作为根。当选择节点 x 作为根节点时,设结果树的高度为 h 。在所有可能的树中,具有最小高度的树(即,min(h))被称为 最小高度树 。
请你找到所有的 最小高度树 并按 任意顺序 返回它们的根节点标签列表。
树的 高度 是指根节点和叶子节点之间最长向下路径上边的数量。
解题思路一:一每个节点为根节点进行bfs,将高度最小的树的根节点返回,但这样会超时
class Solution:
def findMinHeightTrees(self, n: int, edges: List[List[int]]) -> List[int]:
if n == 1: return [0]
minheight = float('inf')
res = []
from collections import defaultdict
G = defaultdict(list)
for e in edges:
G[e[0]].append(e[1])
G[e[1]].append(e[0])
visited = [False] * n
import queue
def bfs(visited):
height = 0
while(q.qsize()):
if height > minheight:
return height
for i in range(q.qsize()):
cur = q.get()
for j in G[cur]:
if not visited[j]:
q.put(j)
visited[j] = True
height += 1
return height
for i in range(n):
q = queue.Queue()
q.put(i)
visited = [False] * n
visited[i] = True
height = bfs(visited)
# print(height)
if height < minheight:
res = [i]
minheight = height
elif height == minheight:
res.append(i)
return res
解题思路二:从度为1的节点不断进行bfs,直到最后最多只剩下两个节点没有遍历,剩下的节点即为最终的结果,度为1的节点即叶子节点,正确性证明:对当前的图(初始的图或者删掉了前几层叶子节点的图),我们要找的满足题设的根节点所在位置只有两种可能,一种在当前图的叶子节点(即度为1的节点),一种为内部节点,若选择某叶子节点1,则该叶子节点1与任意其他叶子节点2的距离必定为叶子1-内部节点x-叶子2,深度为这三段边之和,必大于等于max(内部x-叶子1,内部x-叶子2),所以相比于叶子节点,解空间只能出现在内部节点,每层情况都是这样,所以我们要剥开叶子节点直到再无可分的内部节点为止。这样最后可能的结果最多就只有两个,代码如下:
class Solution:
def findMinHeightTrees(self, n: int, edges: List[List[int]]) -> List[int]:
if n == 1: return [0]
degree = [0] * n
from collections import defaultdict
G = defaultdict(list)
for e in edges:
G[e[0]].append(e[1])
G[e[1]].append(e[0])
degree[e[0]] += 1
degree[e[1]] += 1
import queue
q = queue.Queue()
for i in range(n):
if degree[i] == 1:
q.put(i)
degree[i] -= 1
while(n > 2):
n -= q.qsize()
for i in range(q.qsize()):
cur = q.get()
for j in G[cur]:
degree[j] -= 1
if degree[j] == 1:
q.put(j)
res = []
while(q.qsize()):
res.append(q.get())
return res