题目描述:假设你有一个很长的花坛,一部分地块种植了花,另一部分却没有。可是,花卉不能种植在相邻的地块上,它们会争夺水源,两者都会死去。
给定一个花坛(表示为一个数组包含0和1,其中0表示没种植花,1表示种植了花),和一个数 n 。能否在不打破种植规则的情况下种入 n 朵花?能则返回True,不能则返回False。
解题思路一:动态规划,首先计算原有花团中的花,然后dp[i][0]表示当前位置i不种花到i位置可种花的最大值,dp[i][1]表示当前位置i种花到位置i为止可以种花的最大数目,代码如下:
class Solution:
def canPlaceFlowers(self, flowerbed: List[int], n: int) -> bool:
flowerbed = [0] + flowerbed + [0]
lenf = len(flowerbed)
dp = [[0, 0] for _ in range(lenf)]
has = 0
for f in flowerbed:
if f == 1:
has += 1
for i in range(1, lenf-1):
if flowerbed[i] == 1:
dp[i][1] = dp[i-1][0] + 1
else:
if flowerbed[i-1] == flowerbed[i+1] == 0:
dp[i][1] = dp[i-1][0] + 1
dp[i][0] = max(dp[i-1][0], dp[i-1][1])
else:
dp[i][0] = max(dp[i-1][0], dp[i-1][1])
if max(dp[i][0], dp[i][1]) >= n + has:
return True
return False
解题思路二:贪心算法,每次都在两朵花之间种下满足规则的最多的花,两朵花之间可以种的花的数量为可以种花的位置+1除以2取下整,代码如下:
class Solution:
def canPlaceFlowers(self, flowerbed: List[int], n: int) -> bool:
lenf = len(flowerbed)
prev = -1
count = 0
for i in range(lenf):
if flowerbed[i] == 1:
if prev < 0:
count += i // 2
else:
count += (i - prev -2) // 2
prev = i
if count >= n:
return True
if prev < 0:
count += (lenf + 1) // 2
else:
count += (lenf - prev - 1) // 2
return count >= n