605. 种花问题

题目描述:假设你有一个很长的花坛,一部分地块种植了花,另一部分却没有。可是,花卉不能种植在相邻的地块上,它们会争夺水源,两者都会死去。
给定一个花坛(表示为一个数组包含0和1,其中0表示没种植花,1表示种植了花),和一个数 n 。能否在不打破种植规则的情况下种入 n 朵花?能则返回True,不能则返回False。
解题思路一:动态规划,首先计算原有花团中的花,然后dp[i][0]表示当前位置i不种花到i位置可种花的最大值,dp[i][1]表示当前位置i种花到位置i为止可以种花的最大数目,代码如下:

class Solution:
    def canPlaceFlowers(self, flowerbed: List[int], n: int) -> bool:
        flowerbed = [0] + flowerbed + [0]
        lenf = len(flowerbed)
        dp = [[0, 0] for _ in range(lenf)]
        has = 0
        for f in flowerbed:
            if f == 1:
                has += 1
        for i in range(1, lenf-1):
            if flowerbed[i] == 1:
                dp[i][1] = dp[i-1][0] + 1
            else:
                if flowerbed[i-1] == flowerbed[i+1] == 0:
                    dp[i][1] = dp[i-1][0] + 1
                    dp[i][0] = max(dp[i-1][0], dp[i-1][1])
                else:
                    dp[i][0] = max(dp[i-1][0], dp[i-1][1])
            if max(dp[i][0], dp[i][1]) >= n + has:
                return True
        return False
                

解题思路二:贪心算法,每次都在两朵花之间种下满足规则的最多的花,两朵花之间可以种的花的数量为可以种花的位置+1除以2取下整,代码如下:

class Solution:
    def canPlaceFlowers(self, flowerbed: List[int], n: int) -> bool:
        lenf = len(flowerbed)
        prev = -1
        count = 0
        for i in range(lenf):
            if flowerbed[i] == 1:
                if prev < 0:
                    count += i // 2
                else:
                    count += (i - prev -2) // 2
                prev = i
            if count >= n:
                return True
        if prev < 0:
            count += (lenf + 1) // 2
        else:
            count += (lenf - prev - 1) // 2
        return count >= n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值