Description
给定M个二元组(A_i, B_i),求X_1, …, X_N满足:对于任意(A_i, B_i),有|X_{A_i} - X_{B_i}| = 1成立。
Solution
一种可行方案,一定是有只填0或1的方法,于是我们给二元组连边,然后直接染色,发现冲突直接输出NO。
为什么不填两种以上的数?
我们假设有一条链,然后我们要随机往上面加边,那么如果有两种以上的数,就会有相差大于1的情况,那么我们不如直接填两种数取尽量多的满足相差为1的情况。
Code
#include<iostream>
#include<cstdio>
#include<cstdlib>
#define fo(i,j,k) for(int i=j;i<=k;i++)
#define fd(i,j,k) for(int i=j;i>=k;i--)
#define N 10001
#define M 200001
using namespace std;
int to[M],next[M],last[M],num=0;
int c[N];
void link(int x,int y)
{
num++;
to[num]=y;
next[num]=last[x];
last[x]=num;
}
void dfs(int x,int t)
{
c[x]=t;
for(int i=last[x];i;i=next[i])
{
int v=to[i];
if(c[v]==-1) dfs(v,1-t);
else if(c[v]==t)
{
printf("NO");
exit(0);
}
}
}
int main()
{
freopen("perfect.in","r",stdin);
freopen("perfect.out","w",stdout);
int n,m;
cin>>n>>m;
fo(i,1,m)
{
int x,y;
scanf("%d %d",&x,&y);
link(x,y);
link(y,x);
}
fo(i,1,n) c[i]=-1;
fo(i,1,n)
if(c[i]==-1) dfs(i,0);
printf("YES\n");
fo(i,1,n) printf("%d ",c[i]);
}