- 博客(55)
- 收藏
- 关注
原创 SelectDB索引实战:从入门到精通,避开那些年我踩过的坑
SelectDB索引体系分为点查索引(精准定位)和跳数索引(批量过滤)两类。点查索引中,前缀索引适合排序键查询,倒排索引适合高基数字段;跳数索引如ZoneMap和BloomFilter则擅长范围过滤。实战经验表明:索引设计需遵循"按需创建、高频优先、持续优化"原则,避免过度设计(如全字段倒排索引)和误用(如BloomFilter高基数场景)。关键技巧包括:使用覆盖索引减少回表、利用索引下推优化查询、分区与索引配合提升效率。同时需警惕索引失效场景(函数操作、隐式转换等)和维护陷阱(碎片、统
2025-12-18 20:27:56
641
原创 SelectDB JSON字段查询性能优化实战:从踩坑到最佳实践
JSON字段查询性能优化指南:针对JSON字段查询存在的全表扫描和解析开销问题,本文提出虚拟列+索引的核心优化方案,通过创建虚拟列并建立索引,使查询性能提升160倍。同时介绍了复合索引、分页优化、数据冗余等高级技巧,并以电商商品搜索为例展示优化效果:单条件查询从3-5秒降至50-100ms。强调JSON字段应谨慎使用,建议只存储动态扩展属性和低频查询数据,并建立持续监控机制。核心原则是优先使用虚拟列和索引,避免全表扫描。
2025-12-17 16:25:06
624
原创 向量数据库选型:从千万级到百亿级,你的业务到底需要什么?
摘要:本文深入探讨向量数据库选型与优化策略,提出按数据规模分级的选型框架:千万级以下推荐轻量级方案(Chroma/pgvector),千万到亿级选择专业向量库(Qdrant/Weaviate),十亿级以上需分布式架构(Milvus/Pinecone)。重点分析了HNSW、IVF、PQ三种索引算法的性能权衡,HNSW适合高召回率场景但内存占用大,IVF内存友好但召回率略低,PQ内存压缩显著但精度损失较大。针对生产环境,强调统计信息更新、内存墙规避和冷热数据分离等关键实践,最后根据不同场景给出了具体选型建议。
2025-12-08 21:28:00
1038
原创 Elasticsearch与SelectDB的正面对决:日志分析场景的架构深度调优与选型指南
本文对比了Elasticsearch和SelectDB在日志分析场景的核心差异。Elasticsearch的倒排索引架构在高并发写入时存在性能瓶颈,而SelectDB的列式存储在聚合查询上具有5-10倍优势。测试显示SelectDB写入性能可达ES的5倍,存储成本降低70%。SelectDB的VARIANT类型解决了半结构化数据管理难题,冷热数据分层架构进一步优化成本。虽然ES在复杂全文检索上仍有优势,但SelectDB更适合高吞吐日志分析场景。建议根据业务需求选择,或采用混合架构实现优势互补。
2025-12-03 17:28:37
1270
原创 Caffeine不只是Guava Cache升级版:高并发场景下的缓存设计与实战陷阱
在某些特定访问模式下,可能会导致某个key的频率计数被衰减到低于新来的key,从而在PK中被淘汰。突然来了1000个只访问一次的热点数据(比如明星八卦新闻),按照LRU,这些“一次性热点”会把之前积累的真正热点数据全部挤出缓存。结果就是:第一个请求卡在加载数据,后面的999个请求全部在等待这个锁。我们在灰度环境发现一个奇怪现象:某个关键配置项的缓存,白天命中率99%,但每天早上8点总会准时出现一波缓存穿透,持续大概5分钟。Caffeine只计算了对象的浅层大小,但这些软引用持有的实际数据没有被统计在内。
2025-12-03 13:43:02
845
原创 MySQL查询优化:从Explain执行计划到索引失效的深度避坑指南
摘要:本文深入解析MySQL查询优化的核心技术点,包括执行计划深度分析、索引失效原因和连接查询优化。重点指出EXPLAIN结果中Extra字段的重要性,揭示索引失效与统计信息的关系,并分享JOIN查询的实际优化经验。文章提供实用优化策略清单,强调理解B+树索引原理和优化器成本估算逻辑的重要性,提出优化需结合数据分布和查询模式的系统性思维。通过多个踩坑案例,展示了从执行计划诊断到解决方案的完整优化过程。
2025-12-02 13:53:34
692
原创 扒开MySQL的引擎盖:InnoDB如何用B+树、缓冲池和日志系统扛起高并发
扒开InnoDB的引擎盖,我们看到的是一个精密的系统工程:B+树用有序的结构换来了高效的查询与范围扫描;和它的“近亲”B树相比,B+树的所有数据记录(行)都存放在叶子节点上,并且叶子节点之间通过双向链表连接。而如果用的是B树,因为数据分布在所有节点上,进行范围查询可能需要在不同层次的节点间来回跳跃,会产生更多的随机I/O。当你开启一个事务时,会生成一个“读视图”(Read View),这个视图决定了你能看到哪些版本的数据。 在你之后提交的修改,对你来说都是不可见的。(因为约束必须在最新的数据上检查)。
2025-12-02 11:49:11
825
原创 数据到底存在了哪儿?——拆解MySQL的存储引擎与一致性实现
本文深入剖析了MySQL InnoDB的核心存储机制与数据一致性保障方案。首先解析了InnoDB的物理存储结构,包括16KB页的基本存储单元和DYNAMIC行格式的特性,通过实际案例说明行格式选择对DDL操作的影响。其次详细阐述了三大日志机制:redolog确保持久性、undolog实现原子性、binlog支持主从复制,并分析了参数配置不当导致的数据丢失问题。最后探讨了主从复制延迟和分布式事务的局限性,提出了最终一致性的实践方案。文章强调在架构设计中需要根据业务特点,在性能与数据一致性之间做出合理权衡。
2025-12-02 11:39:07
737
原创 从根上刨:MySQL性能优化的三大“道”与“术”
摘要:本文深入探讨MySQL优化的三大核心领域。索引部分剖析B+树原理,揭示范围查询高效机制,分享IN条件导致慢查询的解决案例,提出联合索引顺序设计等实用建议。事务章节解析锁粒度与MVCC机制,通过死锁案例展示循环等待的成因与解法,强调避免大事务的重要性。架构层面分析读写分离的主从延迟问题及分库分表的分片键选择陷阱,指出水平分表带来的复杂挑战。全文贯穿"权衡"思想,强调优化需结合业务场景,索引是基础,事务要精简,架构扩展需谨慎。
2025-12-02 10:10:31
991
原创 Grafana+MySQL监控实战:从数据库救火到性能预测的完整方案
本文系统介绍了MySQL监控体系的构建与实践。首先提出从基础硬件层到业务影响层的四级监控框架,详细列出关键指标清单。对比了Prometheus Exporter、Percona插件和自定义脚本三种采集方案的优劣。针对Grafana直连MySQL的常见问题,给出查询代理层和只读从库的优化方案。重点阐述了四象限监控大屏设计、慢查询分析、锁竞争监控等核心仪表盘的实现方法。强调业务指标与数据库指标的关联分析,提出动态基线告警机制。最后分享了故障排查工具和容量预测模型,指出完整的可观测性体系需要覆盖从预警到优化的全链
2025-12-01 20:49:57
840
原创 Elasticsearch性能优化实战:从GB到PB级数据的性能演进之路
优化重点:写入吞吐量分片策略:按时间滚动,单个分片50-100GBElasticsearch的性能优化是个没有终点的旅程。从GB到PB,每个数据量级都有不同的优化策略和陷阱。五年来我最大的体会是:没有最好的配置,只有最适合业务场景的权衡。核心经验小数据简单化:别过度设计,单节点往往最有效中数据分布式:合理分片,热温冷架构是王道大数据精细化:查询路由、段合并、资源隔离一个不能少监控驱动优化:没有数据支撑的优化都是瞎猜未来挑战。
2025-12-01 17:21:24
991
原创 Elasticsearch一致性揭秘:从脑裂惊魂到数据可靠性的实战博弈
本文深入探讨Elasticsearch分布式系统中的核心问题与实战经验。重点分析了Zen2共识算法的配置陷阱,指出动态quorum机制对网络抖动敏感的问题,并给出超时参数计算公式。在数据一致性方面,揭示了写入成功的多层含义,建议根据数据类型选择不同的持久化策略。针对故障恢复场景,提出分批次恢复策略以避免"恢复风暴"。此外,还介绍了增强型脑裂检测机制和数据修复策略,并针对不同业务场景提供了配置模板。最后强调,Elasticsearch的一致性需要根据业务场景进行权衡,没有放之四海而皆准的配
2025-12-01 17:05:33
744
原创 Elasticsearch ILM实战:从数据热恋到冷静归档的自动化管理
文章摘要:本文分享了日志平台ILM(索引生命周期管理)优化的实战经验。作者通过一个因forcemerge操作导致集群IOPS飙满的故障案例,深入剖析了ILM的核心原理和优化策略。关键点包括:1)ILM本质是资源调度艺术,需平衡数据价值与成本;2)冷热架构设计要注重性能隔离和流量控制;3)策略设计需结合业务特征,避免一刀切的时间配置;4)精细调优forcemerge、shrink等操作的参数;5)建立完善的监控体系。文章还探讨了多租户策略、自定义动作开发等高级实践,提出了存储成本与查询性能的权衡方法。最后强调
2025-12-01 16:49:36
1180
原创 Elasticsearch分片设计:从数据分布失衡到集群稳定性实战
本文总结了Elasticsearch数据分布优化中的关键问题与解决方案。针对分片路由,指出Murmur3哈希在顺序ID场景下会导致数据倾斜,提出复合路由策略(业务ID+随机因子/时间感知路由)提升离散度。在分片分配方面,揭示了平衡算法在异构集群中的局限性,建议手动干预并合理配置感知分配。针对热点分片,强调预防优于治理,提出垂直/水平拆分、路由优化等根治方案。文章还总结了分片数量非线性关系、脑裂场景等实战"神坑",并给出写入/查询优化建议。核心观点是:数据分布需要持续优化,没有通用配置,需
2025-12-01 15:59:53
1220
原创 别让“速成”害了你:一个老程序员眼中的技术成长快与慢
摘要:一位面试官分享了对技术人成长的真知灼见。面试中遇到简历华丽但缺乏深度思考的候选人,引发对技术人成长路径的反思。真正的成长不在于堆砌技术名词,而在于建立"能力矩阵":横向拓展技术广度,纵向深耕技术原理,维度上形成抽象连接能力。有价值的"慢"体现在深度设计、根因分析和底层原理钻研上。警惕"伪工作"和惯性依赖,建议通过定期复盘、刻意设计练习和及时重构来保持成长。技术成长没有捷径,需要打通底层认知与坚守工程质量。(149字)
2025-11-30 21:07:38
383
原创 Spring Boot的魔法与陷阱:从自动配置原理到生产环境避坑实战
本文深入剖析SpringBoot的核心机制与实战经验。自动配置通过条件注解、spring.factories和@EnableAutoConfiguration实现智能装配,但需警惕配置冲突和条件误判陷阱。启动流程包含9个关键步骤,优化可通过精确组件扫描和类路径瘦身实现。配置系统支持17种配置源,需注意YAML语法和优先级问题。Actuator端点需严格安全配置,健康检查应真实测试服务状态。Profile管理建议通过文件区分环境而非注解。SpringBoot的高效使用需要深入理解其自动配置原理、掌握启动优化技
2025-11-30 20:59:51
919
原创 Spring避坑指南:那些年我们亲手埋下的技术债,以及如何填平它们
真正的Spring老司机不是会背多少注解,而是能在大脑里模拟出整个容器的启动流程、Bean的创建顺序、AOP的代理时机。当A依赖B,B又依赖A时,Spring先在三级缓存中为A创建一个工厂,然后在实例化B时发现需要A,就从工厂获取A的早期引用(可能是原始对象也可能是代理)。我们在Controller中注入了一个Session作用域的Bean,在测试时一切正常,上线后却出现随机NullPointerException。Spring就像一把锋利的瑞士军刀,用得好的时候事半功倍,用不好就是自残神器。
2025-11-30 20:48:40
673
原创 OceanBase深度解析:原理、场景与中大型企业迁移实战指南
OceanBase分布式数据库技术解析与迁移实践 摘要:本文深入分析了OceanBase原生分布式数据库的架构设计与核心特性。OceanBase采用Share-Nothing架构和LSM-Tree存储引擎,具备在线弹性扩展、多租户隔离、高兼容性等优势。文章重点探讨了中大型企业从传统数据库迁移至OceanBase的技术路径,包括成本效益分析(硬件成本可降低60%-70%)、风险评估(数据一致性、性能达标等关键指标)以及最佳实践方案(双写迁移、渐进式策略)。通过金融、电商等行业的成功案例,验证了OceanBas
2025-11-30 07:58:13
809
原创 Elasticsearch深度实战:从分布式原理到生产环境踩坑全记录
用了3年Elasticsearch,我的体会是:它确实是最强大的搜索引擎之一,但复杂度也很高。理解其分布式原理和内部机制,是用好它的前提。核心优势:分布式架构确实能处理海量数据查询DSL灵活强大,能满足复杂需求生态完善,工具链成熟适用边界:搜索和分析场景是Elasticsearch的强项事务性操作和复杂关联查询不是强项数据量小于100GB时可能过度复杂未来展望:Elasticsearch在可观测性、安全分析等领域的应用越来越广。
2025-11-28 16:01:15
834
原创 React深度实战:从虚拟DOM陷阱到Fiber架构的真相
本文深入剖析React开发中的核心问题与优化策略:1. 虚拟DOM性能代价:指出虚拟DOM在复杂场景下的性能瓶颈,强调合理使用key和组件扁平化的重要性;2. Fiber架构原理:解析可中断渲染机制,警示生命周期执行时机变化带来的问题;3. Hooks闭包陷阱:通过实例分析闭包问题,提出函数式更新、自定义Hook等解决方案;4. 状态管理演进:探讨状态提升与Context的优化使用,给出状态库选型建议;5. 性能优化体系:从工具链到代码分割、内存管理,构建完整的性能优化方法论;6. 测试策略:建立金字塔式测
2025-11-28 15:14:49
789
原创 LightGBM实战深潜:从梯度单边采样到直方图算法的工程陷阱
本文深入探讨了LightGBM在实际应用中的核心优化策略和常见陷阱。重点分析了梯度单边采样(GOSS)的权重补偿机制与学习率耦合效应,直方图算法的分桶优化与内存管理技巧,以及分类特征处理的高效策略。针对分布式训练场景,提出了数据并行与特征并行的负载均衡方案。此外,还分享了动态提前停止、多模型集成等高级技巧,以及生产环境中的模型监控和推理优化经验。文章强调LightGBM需要根据具体场景精细调优,特别在样本采样、特征处理、分布式计算等方面需要特别注意参数配置,才能充分发挥其性能优势。
2025-11-28 11:30:46
1123
原创 LightGBM工业实践指南:从原理深度剖析到生产环境部署
本文深入剖析了LightGBM的核心技术原理与工业实践要点。重点解析了梯度单边采样(GOSS)的无偏补偿机制、特征捆绑(EFB)的互斥性处理以及直方算法的精度平衡技巧。通过电商推荐系统案例,揭示了工程实践中常见的内存优化、训练速度瓶颈和数值稳定性问题,并给出具体解决方案。文章还详细阐述了超参数调优策略、生产环境部署技巧及模型监控方法,同时明确了LightGBM在结构化大数据场景的优势与在非结构化数据中的局限性。最后强调深入理解算法原理与业务需求相结合,才能最大化发挥LightGBM的工业价值。
2025-11-28 09:46:46
1079
原创 RocketMQ性能调优实战:从千级到百万级TPS的踩坑之路
本文深入探讨了RocketMQ性能优化的关键策略与实践经验。核心要点包括:1)操作系统层面优化,如PageCache内存隔离和零拷贝配置;2)消息堆积治理方案,通过动态分区再平衡和三级消费保护策略实现;3)线程模型调优,针对不同场景调整Netty工作线程和动态线程池;4)存储优化技巧,包括混合刷盘策略和文件温度管理;5)网络连接优化,涉及内核参数调优和智能连接池设计。文章强调性能优化需基于实际监控数据,采取系统性方法,并针对具体业务场景定制解决方案。
2025-11-27 17:04:48
597
原创 RocketMQ在生产环境的实战陷阱:从消息丢失到顺序消息的深度剖析
RocketMQ高可靠机制与性能优化的实践思考 本文深入探讨了RocketMQ在实际应用中的核心问题与解决方案。首先揭示了消息高可靠机制的隐藏陷阱,包括同步刷盘性能问题和主从同步自动降级的可靠性风险。其次分析了顺序消息的串行处理本质及其导致的性能瓶颈,提出了分级顺序策略优化方案。在事务消息方面,指出了超时回查和重复消费的典型问题,并给出了具体解决代码。文章还分享了集群部署的资源分配经验,强调监控指标需关注PageCache命中率等深层数据。最后指出RocketMQ虽优秀但非万能,正确使用需要根据业务场景权衡
2025-11-27 14:02:27
899
原创 Angular的依赖注入:从优雅解耦到性能陷阱的深度实战
本文深入剖析了Angular依赖注入(DI)系统在实际开发中的关键问题与优化方案。首先指出DI不仅是对象创建工具,更是生命周期管理系统,通过Injector树实现服务管理。文章详细分析了常见陷阱:根注入器导致的内存泄漏、组件级注入的性能问题、Tree-shakable Providers的误用代价,并给出具体解决方案。同时探讨了DI在大型应用中的性能优化技巧,包括注入查找路径优化和循环依赖处理。针对微前端架构,提出了沙箱DI和动态模块加载模式。最后总结了测试中的DI注意事项,强调理解DI机制对构建复杂应用的
2025-11-27 10:11:23
1163
原创 用第一性原理重新设计你的人生:学习、工作、赚钱与生活的终极关系
摘要:本文运用第一性原理重新解构学习、工作、赚钱与生活的关系,指出传统线性思维的误区。通过构建"生存回路"和"发展回路"的动态增强系统模型,揭示大多数人陷入平庸循环的根源在于本末倒置、割裂成长与价值创造。提出三大实战策略:将学习转化为能力构建,将工作升级为价值经营,使赚钱模式从时间出售转向价值放大。最终强调要以生活品质为核心校准系统,实现持续增长的幸福与意义。文章为优化人生提供了系统性思考框架。
2025-11-26 20:44:05
507
原创 logicflow和flowable工作流引擎集成打造企业级流程引擎解决方案
LogicFlow是一款国产开源流程图框架,采用分层架构设计和插件化机制,具有高度可扩展性。其核心特性包括:基于SVG的图形渲染引擎、MobX状态管理、灵活的节点系统与连线机制。该框架支持企业级应用场景如BPMN工作流设计器和审批流系统,并提供虚拟滚动、节点池等性能优化方案。技术成本分析显示,相比自主开发可节省60%以上研发投入。实施建议包括渐进式迁移策略和团队技能建设规划。LogicFlow特别适合需要高度定制化、大数据量处理的企业级流程图应用,但对简单需求或技术储备不足的团队需谨慎评估。
2025-11-26 16:53:27
1253
原创 万字长文深入剖析SelectDB与MySQL的架构哲学与选型之道
本文深入对比了MySQL和SelectDB的核心差异。MySQL作为OLTP事务型数据库,采用行式存储和B+Tree索引,擅长高并发点查询和复杂事务处理,适合订单、支付等核心业务系统。SelectDB作为OLAP分析型数据库,采用列式存储和MPP架构,擅长海量数据复杂分析查询,适合数据仓库和报表分析场景。两者在存储模型、索引策略、执行引擎等方面存在本质区别:MySQL像精密钟表为事务优化,SelectDB则像工业挖掘机为批量分析设计。技术选型需根据业务场景决策,在实时交易场景选择MySQL,在大数据分析场景
2025-11-26 11:30:55
1031
原创 SelectDB实战深潜:从MPP引擎调优到万亿级数据架构的硬核实践
本文分享了SelectDB在生产环境中的实战经验与优化策略。核心内容包括:MPP执行引擎调优(数据分布策略、JOIN性能优化)、高并发场景下的资源隔离架构设计(三级资源组、查询限流、熔断机制)、从ClickHouse迁移的技术路径(双写同步、一致性校验、流量切换)以及高级调优技巧(存储引擎优化、查询Hint使用)。文章通过多个真实故障案例,总结了SelectDB在HTAP场景下的优势与适用边界,建议将其作为复杂分析查询的核心组件,与ClickHouse、MySQL等组成混合架构。最终强调数据库选型需平衡性能
2025-11-25 14:22:46
1137
原创 规则引擎选型避坑指南:从Drools到LiteFlow,我们为什么最终选择了它?
本文分享了从Drools到LiteFlow的规则引擎选型经验。最初选择Drools因其强大的RETE算法和复杂规则处理能力,但在大促压测时遭遇性能崩溃(2500QPS下CPU飙升至97%)和内存泄漏问题。随后尝试QLExpress又面临安全性和性能挑战。最终采用LiteFlow的流程编排理念,通过组件化设计实现性能提升(复杂场景下性能是Drools的5倍)和更好的可观测性。文章总结了三种引擎的适用场景:Drools适合规则稳定的复杂业务,QLExpress适合需要灵活配置的场景,而LiteFlow则擅长高并
2025-11-25 10:33:22
967
原创 n8n 架构深度解构:从设计哲学到企业级实践
摘要:本文深入解析了n8n工作流引擎的架构设计,其核心采用声明式编程模型和函数式数据流理念,通过纯函数节点构建可视化工作流。系统具备微内核架构特性,支持动态节点加载和热插拔扩展。执行引擎基于消息驱动的分布式架构,采用状态机管理执行生命周期,并运用事件溯源模式记录完整执行历史。企业级特性包括多租户数据隔离和审计日志系统,通过策略模式和装饰器模式实现。性能优化方面采用多级缓存和智能预热策略。该架构为构建可扩展的企业级自动化平台提供了完整参考。
2025-11-24 20:59:48
581
原创 React 性能优化之Fiber 架构深度解析:从堆栈调和到增量渲染的革命
React Fiber架构革新了虚拟DOM更新机制,通过链表结构实现可中断的调和过程,解决了传统递归更新导致的性能瓶颈。Fiber的核心突破包括:1) 将递归diff改为循环遍历,支持时间分片;2) 优先级调度区分紧急/非紧急更新;3) 双缓存技术避免界面闪烁。实际应用中,Fiber显著提升了大数据场景下的渲染性能(万级数据渲染从1200ms降至200ms),并通过useDeferredValue、startTransition等API优化用户体验。最佳实践包括虚拟滚动、昂贵计算缓存和性能监控。Fiber为
2025-11-24 20:40:27
1026
原创 Dify 源码深度解析:从架构设计到企业级实践
本文基于Dify 0.6.0版本源码,深入解析其核心架构设计思想及企业级优化实践。重点包括:1)插件化模型路由系统采用抽象工厂模式实现模型无关调用;2)工作流引擎基于DAG调度和观察者模式;3)RAG引擎通过策略模式和装饰器模式实现混合检索;4)多租户数据隔离架构;5)多级缓存策略;6)分布式追踪监控体系。文章还分享了企业级部署优化方案及实际性能数据,展示了Dify如何通过模块化设计、可扩展架构和性能优化技术,为构建企业级AI平台提供参考实现。
2025-11-24 10:57:41
913
原创 React 19 深度解析:从并发模式到数据获取的架构革命
本文分享了React19在电网实时监控系统中的实战经验。针对React18处理5,000+电力节点时出现的性能瓶颈,团队深度应用React19新特性实现了显著优化:使用useHook简化数据获取流程,减少65%代码量;通过服务端组件降低60%的bundle大小;利用Actions优化表单处理。最终使首屏加载时间提升39%,内存使用降低38%,交互响应时间缩短46%。这些改进不仅解决了界面卡顿问题,还使系统具备了支持10,000+节点的扩展能力。React19通过简化数据流、提升渲染性能和打通全栈能力,为数据
2025-11-21 18:13:04
802
1
原创 Flowable CMMN 实战:从流程驱动到案例驱动的架构演进
本文介绍了如何通过CMMN(Case Management Model and Notation)重构传统BPMN保险理赔系统的经验。原系统采用刚性流程设计,包含37个审批节点和15条分支路径,导致变更成本高、异常处理困难。团队通过对比分析,选择Flowable CMMN实现案例驱动架构,将平均处理时间缩短40%,流程变更发布时间减少86%。文章详细阐述了CMMN案例模型设计、动态任务管理、哨兵条件等核心技术决策,总结了BPMN与CMMN的适用场景选择标准,并分享了性能优化策略和常见问题解决方案。实践证明,
2025-11-20 20:55:21
933
原创 React vs Vue:五年全栈老兵的真实体验
本文对比了React和Vue在实际项目中的应用体验。通过实现实时持仓看板模块的案例,发现Vue更易上手但React更易调试;性能差异不大,真正的瓶颈在于代码优化;React生态丰富但选择成本高,Vue更一体化。随着Hooks和Composition API的演进,两个框架都变得更简洁灵活。建议根据团队背景选择:React适合复杂项目和技术团队,Vue适合快速开发和经验较浅的团队。最终结论是框架选择应基于团队能力而非技术本身,良好的工程实践才是项目成功的关键。
2025-11-20 20:48:13
1124
原创 Flowable实战:从流程混乱到优雅编排的架构演进
摘要: 本文详细记录了一个供应链金融项目从传统硬编码审批流程迁移到Flowable工作流引擎的技术改造过程。项目原有的"大泥球"架构导致每次流程变更需要2个月开发周期,通过采用Flowable实现流程与业务解耦后,变更周期缩短至2天。文章重点阐述了技术选型考量、BPMN流程建模、事件驱动架构设计等核心改造环节,并分享了事务管理、性能优化等实战经验。最终系统实现了审批效率提升66%、开发效率提升3倍的显著效果,同时总结了Flowable适用场景评估框架和实施方法论。
2025-11-19 15:04:32
1097
原创 React深度实战:从组件抽象到性能优化的思考历程
本文分享了React后台管理系统重构经验。通过分析原报表页面卡顿原因(昂贵计算直接放在render中),团队尝试了组件拆分、useMemo优化,最终采用自定义Hook+useEffect+Context的方案,将筛选响应时间从2.8秒降至0.3秒。文章总结了关键决策点:优先选择Hook而非HOC、合理使用useMemo、采用Context避免prop drilling,并提出了组件设计三原则(单一职责/数据驱动/组合优于继承)。实践表明,理解React设计思想比机械使用API更重要,这套架构经受住了三年业务
2025-11-19 09:44:04
774
原创 Flowable初识:现代业务流程自动化的架构艺术
经过多个项目的实践,我总结出这些适合使用Flowable的场景业务流程频繁变更 - 市场部经常调整审批流程需要可视化监控 - 管理层想看流程执行情况复杂业务规则 - 不同条件走不同路径长时间运行流程 - 一个流程可能运行几天甚至几个月需要版本控制 - 流程定义需要迭代演进不适合的场景简单的CRUD操作实时性要求极高的场景团队没有BPMN学习成本预算Flowable不是银弹,但当你真正需要工作流引擎时,它会是你最可靠的伙伴。它的设计哲学是。
2025-11-18 20:41:15
629
原创 React深度解析:重新思考前端开发的本质
摘要:本文探讨了从jQuery到React的思维模式转变,分析了React的核心价值。文章比较了命令式与声明式编程的区别,指出虚拟DOM是实现声明式编程的关键,而非仅为性能优化。详细解析了Hooks如何提升状态逻辑复用性,并提供了性能优化的实用建议。同时讨论了Context API在状态管理中的合理使用、错误边界的重要性,以及React组件测试的正确方法。最后强调React的革命性在于改变了构建用户界面的思维方式,其"从如何做到是什么"的转变、组件化思维和声明式编程等核心理念对前端开发影
2025-11-18 14:05:06
886
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅