王道考研 - 计算机组成原理(2)

2.1.1 进位计数法

在这里插入图片描述

2.1.2 进制转换

任意进制转十进制

在这里插入图片描述

十进制转任意进制

整数情况(除基,取余法)

在这里插入图片描述

小数情况(乘基,取整法)

在这里插入图片描述

2的n次方 进制之间的转换

在这里插入图片描述

真值和机器数

在这里插入图片描述

2.1.3 BCD码

在这里插入图片描述
在这里插入图片描述

2.1.4 字符

ASCII 码

在这里插入图片描述在这里插入图片描述在这里插入图片描述

字符串

在这里插入图片描述

汉字的表示和编码

在这里插入图片描述

2.1.5 奇偶校验

校验原理

在这里插入图片描述

奇偶校验

在这里插入图片描述
在这里插入图片描述

2.1.6 海明码

海明校验码思路简介

在这里插入图片描述

海明码求解步骤

在这里插入图片描述
在这里插入图片描述

2.1.7 循环冗余校验码

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

2.2.1 无符号数及原码

无符号数

无符号数:整个机器字长的全部二进制位均为数值位,没有符号位,相当于数的绝对值
在这里插入图片描述

有符号数

在这里插入图片描述

定点数

在这里插入图片描述在这里插入图片描述

原码

PS:下面的 n 是不包括符号位的
在这里插入图片描述
为什么原码不适合做加/减法?
答案:如果计算机内部采用原码表示数,那么在进行加法和减法运算的时候,最终都转化为两个绝对值的加运算和减运算,因此,在设计计算器的时候就既需要设计加法运算器,又要设计减法运算器(代价有点大,是否可以就用一种类型的运算器呢? 其实大多数人都喜欢做加法运算,不太喜欢用减法运算)。于是就出现了补码,用补码进行加减运算是很方便的。

2.2.2 补码,反码,移码

补码

7点顺时针拨动1格表示的是:7+1=8
7点逆时针拨动1格表示的是:7-1=6
7点顺时针拨动11格表示的是:7+11=6

在这里插入图片描述
由时钟启发,发现 只要找到一个 “模” ,就可以在加减法之间互相转换。
通过这个模,最后发明了补码,通过补码就可以将减法变成加法运算。
在这里插入图片描述求补 和 求补码不一样的。

在这里插入图片描述在这里插入图片描述

反码

在这里插入图片描述

移码

在这里插入图片描述

2.2.3 移位运算

十进制的移位
在这里插入图片描述

二进制无符号数的移位 – 逻辑移位

在这里插入图片描述

二进制有符号数移位 – 算术移位

原码情况

在这里插入图片描述

反码 和 补码情况

在这里插入图片描述

循环移位(了解即可)

把移出去的数字补回空缺的位置

2.2.4 加减运算和溢出判断更换 - 定点数

定点数的加减法

基本思路:

  1. 转换成 x + y 的形式
  2. 计算[x]补 + [y]补([x + y]补 = [x]补 + [y]补)
  3. 即使是减法,也要转换为加法 [x]补 + [-y]补 (假设y是负数,对负数做求补运算)

例题:
在这里插入图片描述
在这里插入图片描述

溢出

承接上一题

溢出原因

在这里插入图片描述在这里插入图片描述

判断是否溢出

方法一:
在这里插入图片描述
方法二:
在这里插入图片描述
方法三:
在这里插入图片描述

2.2.5 定点数的乘法运算

原码一位乘法

在这里插入图片描述

补码一位乘法

2.2.6 强制类型转换(不做记录)

2.2.7 除法预备知识

人为的做法

在这里插入图片描述

原码恢复余数法(原码加减交替法)

在这里插入图片描述
第一步永远是减法,如果相减的结果为负数,表示不够减,商0,需要加回来,如果是正数,表示够减,商1,下一次需要先将结果左移,最低位补零,然后重复刚才的步骤。最后余数要恢复,因为余数左移了n次,余数需要乘以2的 -n 次方

2.2.8 原码除法与补码除法更换版

原码不恢复余数法

和原码恢复余数法类似,只不过有几个步骤不太一样。
在这里插入图片描述在这里插入图片描述

补码加减交替法(不做记录)

2.3.1 浮点数的表示

浮点数的表示

在这里插入图片描述求b的真值的时候出现问题,发现b有9位,但是只能用一个字节来表示b(不考虑扩位),那怎么办呢?
实际上b的尾数 0.01001 红色位置上的0存不存都无所谓,因为在数有效位数的时候是左起第一个不为0的数开始往后数,所以实际上b这个尾数的有效的数据是1001这四个。我们可以把阶码(指数)讲1,把这个0存储到阶码中。
其实这就是浮点数的规格化
在这里插入图片描述

浮点数的规格化

在这里插入图片描述原码情况下:要求尾数最高位为1
补码情况下:正数要求尾数最高位为1,负数要求尾数最高为0

特点

在这里插入图片描述

2.3.2 IEEE754标准

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.3.3 浮点数加减交替版

浮点数的加减运算

在这里插入图片描述

舍入处理

在这里插入图片描述

2.4.1 基本逻辑符号

算数逻辑单元

在这里插入图片描述

逻辑符号

在这里插入图片描述
在这里插入图片描述

2.4.2一位加法器设计(不必深究)

在这里插入图片描述

串行加法器

在这里插入图片描述

串行进行的并行加法器

在这里插入图片描述可以看出,上面的方式并没有优化多少,仍然需要等待上一位的进位信息,我们通过观察公式,可以对电路进行优化,产生了并行进位的并行加法器

在这里插入图片描述

并行进位的并行加法器

在这里插入图片描述多个4位CLA加法器
在这里插入图片描述

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值