克里金差值原理

克里金差值是一种常用的地统计方法,用于估计未知位置的数值。在Matlab中,可以使用dacefit函数来实现克里金差值。在给定一组已知位置和对应数值的数据后,可以通过dacefit函数拟合一个克里金模型。该函数的输入参数包括已知位置数据S和对应数值数据Y,以及一些模型参数设置。其中,@regpoly0表示使用零阶多项式作为回归模型,@corrgauss表示使用高斯函数作为变异函数模型。通过拟合得到的模型,可以对未知位置的数值进行预测。 在给定一个格网范围和间距后,可以使用gridsamp函数创建一个格网,并将其作为输入参数传递给predictor函数,以获得格网点的预测值。同时,可以使用mesh函数将预测结果可视化,以便更直观地观察预测表面。此外,还可以使用plot3函数将原始的已知位置数据以散点图的形式绘制在预测表面上,以便比较预测结果与实际观测值的差异。 另外,还可以使用mesh函数将每个点的插值误差大小可视化,以便评估预测的准确性。 综上所述,通过在Matlab中使用dacefit函数、gridsamp函数和predictor函数,可以实现克里金差值,并对预测结果进行可视化和误差评估。 #### 引用[.reference_title] - *1* *2* [克里金插值---MATLAB程序](https://blog.csdn.net/zd1_666/article/details/129430945)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [克里金插值(Kriging)在MATLAB中的实现(克里金工具箱)](https://blog.csdn.net/qq_40937675/article/details/89792122)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值