bert+seq2seq 周公解梦,看AI如何解析你的梦境?

本文介绍了一个利用BERT+seq2seq模型解析梦境的项目,通过收集和清洗梦境数据,构建了33000+条记录的数据集。代码实现包括BERT模型的下载、数据预处理、模型训练和预测,旨在理解和熟悉seq2seq模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文代码: https://github.com/saiwaiyanyu/tensorflow-bert-seq2seq-dream-decoder

介绍

在参与的项目和产品中,涉及到模型和算法的需求,主要以自然语言处理(NLP)和知识图谱(KG)为主。NLP涉及面太广,而聚焦在具体场景下,想要生产落地的还需要花很多功夫。

作为NLP的主要方向,情感分析,文本多分类,实体识别等已经在项目中得到应用。例如

  • 通过实体识别,抽取文本中提及到的公司、个人以及金融产品等。
  • 通过情感分析,判别新闻资讯,对其提到的公司和个人是否利好?
  • 通过文本多分类,判断资讯是否是高质量?判断资讯的行业和主题?

具体详情再找时间分享。而文本生成、序列到序列(Sequence to Sequence)在机器翻译、问答系统、聊天机器人中有较广的应用,在参与的项目中暂无涉及,本文主要通过tensorflow+bert+seq2seq实现一个简单的问答模型,旨在对seq2seq的了解和熟悉。

数据

关于seq2seqdemo数据有很多,例如小黄鸡聊天语料库,影视语料库,翻译语料库等等。由于最近总是做些奇怪的梦,便想着,做一个AI解梦的应用玩玩,just for fun

通过采集从网上采集周公解梦数据,通过清洗,形成

  • dream:梦境;
  • decode:梦境解析结果。

这样的序列对,总计33000+ 条记录。数据集

{
   
    "dream": "梦见商人或富翁",
    "decode": "是个幸运的预兆,未来自己的事业很有机会成功,不过如果梦中的富翁是自己,则是一个凶兆。。"
}

模型准备

bert

下载 bert

    $ git clone https://github.com/google-research/bert.git

下载中文预训练模型

    $ wget -c https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip
    $ unzip chinese_L-12_H-768_A-12.zip 

bert + seq2seq

bertinput:

    
self.input_ids = tf.placeholder(
    dtype=tf.int32,
    shape=[None, None],
    name="input_ids"
)
self.input_mask = tf.placeholder(
    dtype=tf.int32,
    shape=[None, None<
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值